Ngân Hàng đề Thi Toán Cao Cấp A1 - Học Viện Công Nghệ Bưu Chính ...

OPTADS360 intTypePromotion=1 zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn tailieu.vn NÂNG CẤP Đăng Nhập | Đăng Ký Chủ đề »
  • Đề thi toán cao cấp 2
  • Đại số tuyến tính
  • Toán rời rạc
  • Xác suất thống kê
  • Phương trình vi phân
    • Toán cao cấp
    • Toán kinh tế
  • HOT
    • CEO.24: Bộ 240+ Tài Liệu Quản Trị Rủi...
    • TL.01: Bộ Tiểu Luận Triết Học
    • CEO.27: Bộ Tài Liệu Dành Cho StartUp...
    • FORM.07: Bộ 125+ Biểu Mẫu Báo Cáo...
    • FORM.04: Bộ 240+ Biểu Mẫu Chứng Từ Kế...
    • FORM.08: Bộ 130+ Biểu Mẫu Thống Kê...
    • LV.26: Bộ 320 Luận Văn Thạc Sĩ Y...
    • CMO.03: Bộ Tài Liệu Hệ Thống Quản Trị...
    • LV.11: Bộ Luận Văn Tốt Nghiệp Chuyên...
    CEO.29: Bộ Tài Liệu Hệ Thống Quản Trị Doanh...
TUYỂN SINH YOMEDIA ADSENSE Trang Chủ » Khoa Học Tự Nhiên » Toán học Ngân hàng đề thi toán cao cấp A1 - Học viện Công nghệ Bưu chính Viễn thông

Chia sẻ: VĂN THIỆU NGUYỄN | Ngày: | Loại File: DOC | Số trang:10

Thêm vào BST Báo xấu 6.668 lượt xem 1.291 download Download Vui lòng tải xuống để xem tài liệu đầy đủ

Một số loại câu hỏi đề thi toán cao cấp A1. Tài liệu dành cho các bạn học sinh sinh viên các trường đại học cao đẳng giúp các bạn củng cố nâng cao kiến thức môn toan cao câp. Chúc các bạn thành công.

AMBIENT/ Chủ đề:
  • Toán cao cấp
  • Bài tập toán cao cấp
  • Đề thi toán cao cấp
  • Giáo trình toán cao cấp
  • Tài liệu toán cao cấp
  • Bài giảng toán cao cấp

Bình luận(0) Đăng nhập để gửi bình luận!

Đăng nhập để gửi bình luận! Lưu

Nội dung Text: Ngân hàng đề thi toán cao cấp A1 - Học viện Công nghệ Bưu chính Viễn thông

  1. TỔNG CÔNG TY BƯU CHÍNH VIỄN THÔNG VIỆT NAM CỘNG HOÀ XÃ HỘI CHỦ NGHĨA VIỆT NAM HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG Độc lập - Tự do - Hạnh phúc ----------------------------------------- ------------------------------- NGÂN HÀNG ĐỀ THI Môn: TOÁN CAO CẤP A1 Ban hành kèm theo Quyết định số: ………/QĐ-TTĐT1của Giám đốc Học viện Công nghệ Bưu chính viễn thông ký ngày /04/2006 PHẦN A DÙNG CHO ĐÀO TẠO HỆ ĐẠI HỌC TỪ XA NGÀNH QTKD THỜI GIAN : 120 phút MỖI ĐỀ 4 CÂU ( một câu loại 1, một câu loại 2, một câu loại 3 và một câu loại 4) I. CÂU HỎI LOẠI 1 ĐIỂM (V.I). 1+ x 1. Tính đạo hàm của hàm số: y = . 1− x 2. Tính đạo hàm của hàm số: y = ln( x + 1 + x 2 ) . 3. Tính đạo hàm của hàm số: y = e x ln sin x . 4. Tính đạo hàm của hàm số: y = x 2 e arctgx . 1− x 5. Tính đạo hàm của hàm số: y = arcsin . 1+ x x sin x + cos x 6. Tính đạo hàm của hàm số: y = . x cos x − sin x a x 7. Tính vi phân của hàm số: f ( x) = + arctg , a là hằng số. x a 8. Tính vi phân của hàm số: y = (a 2 − x 2 ) 5 2 x . 9. Tính vi phân của hàm số: y = 1 + x 2 ln(1 − x) . 1 2x x − 6 10. Tính vi phân của hàm số: y = e ln 12 x+6 II. CÂU HỎI LOẠI 2 ĐIỂM (V.II) 1. Tính giới hạn sau 1
  2. 1  1 + tgx  sin x . lim  x → 0 1 + sin x    2. Tính giới hạn sau x  x 2 + 5x + 4  lim  2  . x →∞ x − 3 x + 7   3. Tính giới hạn sau lim(1 − cos x ) tgx x →0 . 4. Tính giới hạn sau ( ) 1 lim x + e 2 x x . x →0 5. Tính giới hạn sau lim+ (1 + x ) ln x x →0 . x3 6. Chứng minh rằng arcsin x − x và là các vô cùng bé 6 tương đương khi x → 0 . 7. Cho hàm số  ln( x + 1) − ln(1 − x)  khi x < 1, x ≠ 0 f ( x) =  x a  khi x = 0 Tìm hằng số a để hàm số liên tục tại x = 0. 8. Tìm giới hạn sau lim[ sin ln( x + 1) − sin ln x ] . x →∞ 9. Cho hàm số  e ax − e bx  khi x ≠ 0 f ( x) =  x c khi x = 0  Tìm hằng số c để hàm số liên tục tại x = 0 . 1 10. Tìm giới hạn sau  sin x  x 2 lim  x →0  x   III. CÂU HỎI LOẠI 3 ĐIỂM (V.III). 2
  3. 1. Cho hàm số y = x ln 2 x a. Tính vi phân tại x = e với ∆x = −0,1 . b.Tìm cực trị của hàm số. 2. Tính thể tích của khối tròn xoay tạo ra khi quay hình phẳng giới hạn bởi các đường y = x − 4 và y 2 = 2 x quanh trục ox. 3. Cho hàm số x y= x −1 2 a. Tính dy tại x = 0. b. Tính y ( n ) ( x) . 4. Cho tích phân suy rộng +∞ arctgx ∫ 1 x2 dx a. Chứng minh tích phân đã cho hội tụ. b. Tính tích phân đó. 5. Cho tích phân suy rộng +∞ ∫x e 3 −x2 dx 0 a. Chứng minh tích phân đã cho hội tụ. b. Tính tích phân đã cho. 6. Tính diện tích hình phẳng giới hạn bởi các đường cong 1 2 y = x2 + 1 , y= x và y = 5 . 2 7.Tính thể tích vật thể tròn xoay tạo nên khi quay hình phẳng giới hạn bởi đường cong x 2 + y 2 − 6 y + 5 = 0 quanh trục Ox. 8. Tính thể tích khối tròn xoay tạo nên khi quay miền phẳng giới hạn bởi các đường y = 2 x − x 2 và y = 0 quanh trục Ox. 9. Xét sự hội của tích phân suy rộng 3
  4. +∞ e −x ∫ 1 x dx 10. Cho hàm số x−2 y= x2 +1 a. Tính dy tại x=1 b. Tìm cực trị của hàm số. IV. CÂU HỎI LOẠI 4 ĐIỂM (V.IV). 1 x 2 dx 1. a. Tính tích phân: I = ∫ . 0 (1 + x) 4 ∞ xn b. Tìm miền hội tụ của chuỗi luỹ thừa ∑ n.(n − 1) . n=2 1 xdx 2. a. Tính tích phân: I =∫ . 0 1+ x ∞ 2n − 1 b. Tìm miền hội tụ của chuỗi luỹ thừa ∑ ( 3n + 2 ) n =1 n .( x − 2) n . 1 e x dx 3. a. Tính tích phân: I =∫ . b. Xét 0 e x + e −x ∞ (−1) n sự hội tụ của chuỗi số ∑ n. ln(n + 1) . n =1 0 1− ex 4. a. Tính tích phân: I= ∫ x dx . ln 31 + e (−1) n +1 x n +1 ∞ b. Tìm miền hội tụ của chuỗi luỹ thừa ∑ . n =1 n.(n + 1) 3 a. Tính tích phân: I = ∫x 9 − x 2 dx 2 5. −3 ∞ x 3n b. Tìm miền hội tụ của chuỗi luỹ thừa ∑ n n =1 n.4 3 x 6. a. Tính tích phân: I =∫ dx . 0 6−x 4
  5. ∞ ( x + 2) 2 n b. Tìm miền hội tụ của chuỗi luỹ thừa ∑ n.2 n . n =1 1 7. a. Tính tích phân: I = ∫ x.arctgx.dx . −1 ∞ ( x + 2) 2 n +1 b. Tìm miền hội tụ của chuỗi luỹ thừa ∑ 2.n + 1 . n =0 1 8. a. Tính tích phân: I = ∫ x.e − x dx . 0 ∞ ( x + 1) 2 n b. Tìm miền hội tụ của chuỗi luỹ thừa ∑ n =1 n . 9. a. Tính diện tích hình phẳng giới hạn bởi các đường y = x 2 + 4 , và x – y + 4 = 0. ∞ n+2 b. Xét sự hội tụ của chuỗi số ∑n n=2 2 −2 . 10. a. Tính diện tích hình phẳng giới hạn bởi các đường y = x3 , y = x, và y = 2x. ∞ 1 b. Xét sự hội tụ của chuỗi số ∑ . n =1 4n + 2n 2 − 1 3 5
  6. PHẦN B DÙNG CHO ĐÀO TẠO HỆ ĐẠI HỌC TỪ XA NGÀNH ĐTVT VÀ CNTT THỜI GIAN : 120 phút MỖI ĐỀ 4 CÂU ( một câu loại 1, một câu loại 2, một câu loại 3 và một câu loại 4) I. CÂU HỎI LOẠI 1 ĐIỂM (V.I) 1. Tính tích phân sau I = ∫ x ln 2 xdx . 2. Tính tích phân sau cot gx I =∫ dx . sin x 3. Tính tích phân sau tgx I =∫ dx . cos x 4. Tính tích phân sau I = ∫ arctg 2 x − 1dx . 5. Tính tích phân sau 1 + sin 2 x I =∫ dx . sin 2 x 6. Tính tích phân sau I = ∫ x ln 1 − x dx . 7. Tính tích phân sau 3 I= ∫ xarctgxdx . 0 8. Tính tích phân sau x e2 I =∫ dx . 16 − e x 9. Tính tích phân sau ln 2 I= ∫ 0 e x − 1dx . 6
  7. 10. Tính tích phân sau e ln x I =∫ dx . 1 x 1 + ln x II. CÂU HỎI LOẠI 2 ĐIỂM (V.II) 1. Tính giới hạn sau 1  1 + tgx  sin x . lim  x → 0 1 + sin x    2. Tính giới hạn sau x  x 2 + 5x + 4  lim  2  . x →∞ x − 3 x + 7   3. Tính giới hạn sau lim(1 − cos x ) tgx x →0 . 4. Tính giới hạn sau ( ) 1 lim x + e 2 x x . x →0 5. Tính giới hạn sau lim (1 + x ) ln x x →0 + . x3 6. Chứng minh rằng arcsin x − x và là các vô cùng bé 6 tương đương khi x → 0 . 7. Cho hàm số  ln( x + 1) − ln(1 − x)  khi x < 1, x ≠ 0 f ( x) =  x a  khi x = 0 Tìm hằng số a để hàm số liên tục tại x = 0. 8. Tìm giới hạn sau lim[ sin ln( x + 1) − sin ln x ] . x →∞ 9. Cho hàm số 7
  8.  e ax − e bx  khi x ≠ 0 f ( x) =  x c khi x = 0  Tìm hằng số c để hàm số liên tục tại x = 0 . 1 10. Tìm giới hạn sau  sin x  x2 . lim  x →0  x   III. CÂU HỎI LOẠI 3 ĐIỂM (V.III) 1. Cho hàm số y = x ln 2 x a. Tính vi phân tại x = e với ∆x = −0,1 . b.Tìm cực trị của hàm số. 2. Tính thể tích của khối tròn xoay tạo ra khi quay hình phẳng giới hạn bởi các đường y = x − 4 và y 2 = 2 x quanh trục ox. 3. Cho hàm số x y= x −1 2 a. Tính dy tại x = 0. b. Tính y ( n ) ( x) . 4. Cho tích phân suy rộng +∞ arctgx ∫ 1 x2 dx c. Chứng minh tích phân đã cho hội tụ. d. Tính tích phân đó. 5. Cho tích phân suy rộng +∞ ∫x e 3 −x2 dx 0 c. Chứng minh tích phân đã cho hội tụ. d. Tính tích phân đã cho. 6. Tính diện tích hình phẳng giới hạn bởi các đường cong 8
  9. 1 2 y = x2 + 1 , y= x và y = 5 . 2 7.Tính thể tích vật thể tròn xoay tạo nên khi quay hình phẳng giới hạn bởi đường cong x 2 + y 2 − 6 y + 5 = 0 quanh trục Ox. 8. Tính thể tích khối tròn xoay tạo nên khi quay miền phẳng giới hạn bởi các đường y = 2 x − x 2 và y = 0 quanh trục Ox. 9. Xét sự hội của tích phân suy rộng +∞ e −x ∫ 1 x dx 10. Cho hàm số x−2 y= x2 +1 a. Tính dy tại x=1 b. Tìm cực trị của hàm số. IV. LOẠI CÂU HỎI 4 ĐIỂM (V.IV) 1. a. Xét sự hội tụ của chuỗi số có số hạng tổng quát an = n 2 + n − n . ∞ n+2 b. Tìm miền hội tụ của chuỗi luỹ thừa ∑ n =1 n2 ( x + 3) n . 2. ∞ n a. Xét sự hội tụ của chuỗi số ∑ ( n + 1) n =1 n2 . ∞ n +1 b. Tìm miền hội tụ của chuỗi luỹ thừa ∑ ( 2n + 1) n =1 n ( x − 1) n . 3. ∞ 1 a. Xét sự hội tụ của chuỗi số ∑ ln(1 + tg n n =1 2 ) . 9
  10. ∞ x 3n b. Tìm miền hội tụ của chuỗi luỹ thừa ∑ n.4 n . n =1 4. 2n + n ∞ a. Xét sự hội tụ của chuỗi số ∑ n . n =1 3 + n + 3 3 ∞ ( x + 2) 2 n +1 b. Tìm miền hội tụ của chuỗi luỹ thừa ∑ 2n + 1 . n =0 5. ∞ 1 π a. Xét sự hội tụ của chuỗi số . ∑ n sin 2n n =1 ( n! ) 2 ∞ b. Tìm miền hội tụ của chuỗi luỹ thừa ∑ ( x + 3) n . n =1 ( 2n)! ∞ ( 2 x) n +1 ∞ 2 n (n + 1) 6. Chứng minh rằng ∑ n! = 2 xe 2 x .Từ đó hãy tính tổng n =0 ∑ n! . n =0 7. Cho hàm số f ( x) = x 2 với 0 < x < π . a. Khai triển hàm số thành chuỗi Fourier. ∞ 1 b. Từ đó hãy tính tổng S = ∑ 2 . n =1 n 8. Cho hàm số f ( x) = x(π − x) với x ∈ (0, π ) a. Khai triển hàm số đã cho theo các hàm số sin. ∞ (−1) n b.Tính tổng S = ∑ 3 . n = 0 ( 2n + 1) 9. Cho hàm số f ( x) = x 2 với x ∈ (−π , π ) . a. Khai triển hàm số thành chuỗi Fourier. (−1) n ∞ b. Tính tổng S =∑ 2 . n =1 n 1 10. Cho hàm số f ( x) = ln . 2 + 2x + x 2 a. Khai triển hàm số thành chuỗi các luỹ thừa của (x+1). ∞ (−1) n b. Tính tổng S = ∑ . n =0 n + 1 10
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

  • Ngân hàng đề thi toán A2 có bài giải

    doc 11 p | 1691 | 555

  • Ngân hàng đề thi môn toán cao cấp 1

    pdf 5 p | 2443 | 393

  • NGÂN HÀNG ĐỀ THI MÔN: TOÁN CAO CẤP A1

    pdf 10 p | 1553 | 375

  • Đề thi cao học môn Toán 1998-2008

    pdf 0 p | 643 | 264

  • Một số câu trắc nghiệm toán A3

    pdf 13 p | 563 | 167

  • Toán cao cấp và các dạng bài tập

    pdf 97 p | 845 | 30

  • Đề thi môn toán trường cao đẳng tài chính Hải Quan

    pdf 1 p | 255 | 15

  • Bài thi kết thúc học phần môn Toán cao cấp 1 - Trường ĐH Ngân hàng TP. HCM

    pdf 18 p | 149 | 10

  • Đề thi đại học môn xác suất thống kê trường ĐH Ngân Hàng

    pdf 1 p | 164 | 5

  • Đề thi kết thúc học phần học kỳ Toán cao cấp 1 (Lớp Đại học và Cao đẳng) - ĐH Ngân hàng TP.HCM

    pdf 1 p | 69 | 5

  • Đề thi kết thúc học phần Toán cao cấp 1 - ĐH Ngân hàng TP.HCM

    pdf 1 p | 66 | 4

  • Đề thi kết thúc học phần Toán cao cấp 2 - Trường Đại học Ngân hàng TP. HCM

    pdf 1 p | 31 | 3

  • Đề thi kết thúc học phần học kỳ I năm học 2018-2019 môn Toán cao cấp 2 - ĐH Ngân hàng TP.HCM

    pdf 1 p | 56 | 2

  • Đề thi kết thúc học phần học kỳ II năm học 2018-2019 môn Toán cao cấp 2 - ĐH Ngân hàng TP.HCM

    pdf 1 p | 37 | 2

Thêm tài liệu vào bộ sưu tập có sẵn: Đồng ý Thêm vào bộ sưu tập mới: *Tên bộ sưu tập Mô Tả: *Từ Khóa: Tạo mới Báo xấu
  • Hãy cho chúng tôi biết lý do bạn muốn thông báo. Chúng tôi sẽ khắc phục vấn đề này trong thời gian ngắn nhất.
  • Không hoạt động
  • Có nội dung khiêu dâm
  • Có nội dung chính trị, phản động.
  • Spam
  • Vi phạm bản quyền.
  • Nội dung không đúng tiêu đề.
Hoặc bạn có thể nhập những lý do khác vào ô bên dưới (100 ký tự): Vui lòng nhập mã xác nhận vào ô bên dưới. Nếu bạn không đọc được, hãy Chọn mã xác nhận khác.. Đồng ý LAVA AANETWORK THÔNG TIN
  • Về chúng tôi
  • Quy định bảo mật
  • Thỏa thuận sử dụng
  • Quy chế hoạt động
TRỢ GIÚP
  • Hướng dẫn sử dụng
  • Upload tài liệu
  • Hỏi và đáp
HỖ TRỢ KHÁCH HÀNG
  • Liên hệ
  • Hỗ trợ trực tuyến
  • Liên hệ quảng cáo
Theo dõi chúng tôi

Chịu trách nhiệm nội dung:

Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA

LIÊN HỆ

Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM

Hotline: 093 303 0098

Email: support@tailieu.vn

Giấy phép Mạng Xã Hội số: 670/GP-BTTTT cấp ngày 30/11/2015 Copyright © 2022-2032 TaiLieu.VN. All rights reserved.

Đang xử lý... Đồng bộ tài khoản Login thành công! AMBIENT

Từ khóa » Ngân Hàng đề Thi Giải Tích 1 Ptit