12.9: Theoretical Yield And Percent Yield - Chemistry LibreTexts

Library homepage Search Toolbar Homework Exit Reader Mode
  • Campus Bookshelves
  • Bookshelves
  • Learning Objects
  • Login
  • Request Instructor Account
  • Instructor Commons

Search

Search this book Submit Search

x

Text Color

Reset BrightBluesGrayInverted

Text Size

Reset +-

Margin Size

Reset +-

Font Type

Enable Dyslexic Font
  • Downloads
  • Resources
  • Reference
  • Tools
  • Help
x

selected template will load here

This action is not available.

Library homepage Enter Reader Mode 12: StoichiometryIntroductory Chemistry (CK-12){ }{ "12.01:_Everyday_Stoichiometry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.<PageSubPageProperty>b__1]()", "12.02:_Mole_Ratios" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.<PageSubPageProperty>b__1]()", "12.03:_Mass-Mole_Stoichiometry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.<PageSubPageProperty>b__1]()", "12.04:_Mass-Mass_Stoichiometry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.<PageSubPageProperty>b__1]()", "12.05:_Volume-Volume_Stoichiometry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.<PageSubPageProperty>b__1]()", "12.06:_Mass-Volume_Stoichiometry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.<PageSubPageProperty>b__1]()", "12.07:_Limiting_Reactant" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.<PageSubPageProperty>b__1]()", "12.08:_Determining_the_Limiting_Reactant" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.<PageSubPageProperty>b__1]()", "12.09:_Theoretical_Yield_and_Percent_Yield" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.<PageSubPageProperty>b__1]()" }{ "00:_Front_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.<PageSubPageProperty>b__1]()", "01:_Introduction_to_Chemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.<PageSubPageProperty>b__1]()", "02:_Matter_and_Change" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.<PageSubPageProperty>b__1]()", "03:_Measurements" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.<PageSubPageProperty>b__1]()", "04:_Atomic_Structure" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.<PageSubPageProperty>b__1]()", "05:_Electrons_in_Atoms" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.<PageSubPageProperty>b__1]()", "06:_The_Periodic_Table" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.<PageSubPageProperty>b__1]()", "07:_Chemical_Nomenclature" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.<PageSubPageProperty>b__1]()", "08:_Ionic_and_Metallic_Bonding" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.<PageSubPageProperty>b__1]()", "09:_Covalent_Bonding" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.<PageSubPageProperty>b__1]()", "10:_The_Mole" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.<PageSubPageProperty>b__1]()", "11:_Chemical_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.<PageSubPageProperty>b__1]()", "12:_Stoichiometry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.<PageSubPageProperty>b__1]()", "13:_States_of_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.<PageSubPageProperty>b__1]()", "14:_The_Behavior_of_Gases" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.<PageSubPageProperty>b__1]()", "15:_Water" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.<PageSubPageProperty>b__1]()", "16:_Solutions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.<PageSubPageProperty>b__1]()", "17:_Thermochemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.<PageSubPageProperty>b__1]()", "18:_Kinetics" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.<PageSubPageProperty>b__1]()", "19:_Equilibrium" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.<PageSubPageProperty>b__1]()", "20:_Entropy_and_Free_Energy" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.<PageSubPageProperty>b__1]()", "21:_Acids_and_Bases" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.<PageSubPageProperty>b__1]()", "22:_Oxidation-Reduction_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.<PageSubPageProperty>b__1]()", "23:_Electrochemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.<PageSubPageProperty>b__1]()", "24:_Nuclear_Chemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.<PageSubPageProperty>b__1]()", "25:_Organic_Chemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.<PageSubPageProperty>b__1]()", "26:_Biochemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.<PageSubPageProperty>b__1]()", "zz:_Back_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass230_0.<PageSubPageProperty>b__1]()" }Fri, 21 Mar 2025 03:41:25 GMT12.9: Theoretical Yield and Percent Yield5379753797Delmar Larsen{ }AnonymousAnonymous User2falsefalse[ "article:topic", "stoichiometry", "percent yield", "actual yield", "theoretical yield", "impurities", "showtoc:no", "chemical reactions", "license:ck12", "authorname:ck12", "source@https://flexbooks.ck12.org/cbook/ck-12-chemistry-flexbook-2.0/", "chemical manufacturing", "pharmaceutical production", "drug synthesis", "cost control" ][ "article:topic", "stoichiometry", "percent yield", "actual yield", "theoretical yield", "impurities", "showtoc:no", "chemical reactions", "license:ck12", "authorname:ck12", "source@https://flexbooks.ck12.org/cbook/ck-12-chemistry-flexbook-2.0/", "chemical manufacturing", "pharmaceutical production", "drug synthesis", "cost control" ]https://chem.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fchem.libretexts.org%2FBookshelves%2FIntroductory_Chemistry%2FIntroductory_Chemistry_(CK-12)%2F12%253A_Stoichiometry%2F12.09%253A_Theoretical_Yield_and_Percent_Yield Chemistry LibreTexts
  • Sign in
  • Forgot password
Search Search
  • Home
  • Bookshelves
  • Introductory, Conceptual, and GOB Chemistry
  • Introductory Chemistry (CK-12)
  • 12: Stoichiometry
12.9: Theoretical Yield and Percent Yield Last updated:
  • Page ID53797
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\dsum}{\displaystyle\sum\limits} \)

    \( \newcommand{\dint}{\displaystyle\int\limits} \)

    \( \newcommand{\dlim}{\displaystyle\lim\limits} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\) Table of contents
    1. Can we save some money?
    2. Percent Yield
      1. Example \(\PageIndex{1}\): Calculating the Theoretical Yield and the Percent Yield
        1. Solution
        2. Step 1: List the known quantities and plan the problem.
        3. Known
        4. Unknown
        5. Step 2: Solve.
        6. Step 3: Think about your result.
        7. Step 1: List the known quantities and plan the problem.
        8. Known
        9. Unknown
        10. Step 2: Solve.
        11. Step 3: Think about your result.
    3. Summary
    4. Review
    It is best to have high yields for chemical reactions
    Figure \(\PageIndex{1}\) (Public Domain; Linda Bartlett and the National Cancer Institute via Wikipedia)

    Can we save some money?

    The world of pharmaceutical production is an expensive one. Many drugs have several steps in their synthesis and use costly chemicals. A great deal of research takes place to develop better ways to make drugs faster and more efficiently. Studying how much of a compound is produced in any given reaction is an important part of cost control.

    Percent Yield

    Chemical reactions in the real world do not always go exactly as planned on paper. In the course of an experiment, many things will contribute to the formation of less product than would be predicted. Besides spills and other experimental errors, there are often losses due to an incomplete reaction, undesirable side reactions, etc. Chemists need a measurement that indicates how successful a reaction has been. This measurement is called the percent yield.

    To compute the percent yield, it is first necessary to determine how much of the product should be formed based on stoichiometry. This is called the theoretical yield, the maximum amount of product that could be formed from the given amounts of reactants. The actual yield is the amount of product that is actually formed when the reaction is carried out in the laboratory. The percent yield is the ratio of the actual yield to the theoretical yield, expressed as a percentage:

    \[\text{Percent Yield} = \frac{\text{Actual Yield}}{\text{Theoretical Yield}} \times 100\%\nonumber \]

    Percent yield is very important in the manufacture of products. Much time and money is spent improving the percent yield for chemical production. When complex chemicals are synthesized by many different reactions, one step with a low percent yield can quickly cause a large waste of reactants and unnecessary expense.

    Typically, percent yields are understandably less than \(100\%\) because of the reasons previously indicated. However, percent yields greater than \(100\%\) are possible if the measured product of the reaction contains impurities that cause its mass to be greater than it actually would be if the product was pure. When a chemist synthesizes a desired chemical, he or she is always careful to purify the products of the reaction.

    Example \(\PageIndex{1}\): Calculating the Theoretical Yield and the Percent Yield

    Potassium chlorate decomposes upon slight heating in the presence of a catalyst, according to the reaction below.

    \[2 \ce{KClO_3} \left( s \right) \rightarrow 2 \ce{KCl} \left( s \right) + 3 \ce{O_2} \left( g \right)\nonumber \]

    In a certain experiment, \(40.0 \: \text{g} \: \ce{KClO_3}\) is heated until it completely decomposes. What is the theoretical yield of oxygen gas? The experiment is performed, the oxygen gas is collected, and its mass is found to be \(14.9 \: \text{g}\). What is the percent yield for the reaction?

    Solution

    First, we will calculate the theoretical yield based on the stoichiometry.

    Step 1: List the known quantities and plan the problem.
    Known
    • Given: Mass of \(\ce{KClO_3} = 40.0 \: \text{g}\)
    • Molar mass \(\ce{KClO_3} = 122.55 \: \text{g/mol}\)
    • Molar mass \(\ce{O_2} = 32.00 \: \text{g/mol}\)
    Unknown
    • theoretical yield O2 = ? g

    Apply stoichiometry to convert from the mass of a reactant to the mass of a product:

    \[\text{g} \: \ce{KClO_3} \rightarrow \text{mol} \: \ce{KClO_3} \rightarrow \text{mol} \: \ce{O_2} \rightarrow \text{g} \: \ce{O_2} \nonumber\nonumber \]

    Step 2: Solve.

    \[40.0 \: \text{g} \: \ce{KClO_3} \times \frac{1 \: \text{mol} \: \ce{KClO_3}}{122.55 \: \text{g} \: \ce{KClO_3}} \times \frac{3 \: \text{mol} \: \ce{O_2}}{2 \: \text{mol} \: \ce{KClO_3}} \times \frac{32.00 \: \text{g} \: \ce{O_2}}{1 \: \text{mol} \: \ce{O_2}} = 15.7 \: \text{g} \: \ce{O_2} \nonumber\nonumber \]

    The theoretical yield of \(\ce{O_2}\) is \(15.7 \: \text{g}\).

    Step 3: Think about your result.

    The mass of oxygen gas must be less than the \(40.0 \: \text{g}\) of potassium chlorate that was decomposed.

    Now we will use the actual yield and the theoretical yield to calculate the percent yield.

    Step 1: List the known quantities and plan the problem.
    Known
    • Actual yield \(= 14.9 \: \text{g}\)
    • Theoretical yield \(= 15.7 \: \text{g}\)
    Unknown
    • Percent yield = ? %

    \[\text{Percent Yield} = \frac{\text{Actual Yield}}{\text{Theoretical Yield}} \times 100\% \nonumber\nonumber \]

    Use the percent yield equation above.

    Step 2: Solve.

    \[\text{Percent Yield} = \frac{14.9 \: \text{g}}{15.7 \: \text{g}} \times 100\% = 94.9\% \nonumber\nonumber \]

    Step 3: Think about your result.

    Since the actual yield is slightly less than the theoretical yield, the percent yield is just under \(100\%\).

    Summary

    • Theoretical yield is calculated based on the stoichiometry of the chemical equation.
    • The actual yield is experimentally determined.
    • The percent yield is determined by calculating the ratio of actual yield/theoretical yield.

    Review

    1. What do we need in order to calculate theoretical yield?
    2. If I spill some of the product before I weigh it, how will that affect the actual yield?
    3. How will spilling some of the product affect the percent yield?
    4. I make a product and weigh it before it is dry. How will that affect the actual yield?

    This page titled 12.9: Theoretical Yield and Percent Yield is shared under a CK-12 license and was authored, remixed, and/or curated by CK-12 Foundation via source content that was edited to the style and standards of the LibreTexts platform.

    CK-12 Foundation LICENSED UNDER CK-12 Foundation is licensed under CK-12 Curriculum Materials License
    1. Back to top
      • 12.8: Determining the Limiting Reactant
      • 13: States of Matter
    1. © Copyright 2026 Chemistry LibreTexts
    2. Powered by CXone Expert ®

    The LibreTexts libraries are Powered by NICE CXone Expert and are supported by the Department of Education Open Textbook Pilot Project, the UC Davis Office of the Provost, the UC Davis Library, the California State University Affordable Learning Solutions Program, and Merlot. We also acknowledge previous National Science Foundation support under grant numbers 1246120, 1525057, and 1413739. Privacy Policy. Terms & Conditions. Accessibility Statement. For more information contact us at [email protected].

    Tag » How To Calculate Actual Yield