13.2 Wave Properties: Speed, Amplitude, Frequency, And Period

Wave Variables

In the chapter on motion in two dimensions, we defined the following variables to describe harmonic motion:

  • Amplitude—maximum displacement from the equilibrium position of an object oscillating around such equilibrium position
  • Frequency—number of events per unit of time
  • Period—time it takes to complete one oscillation

For waves, these variables have the same basic meaning. However, it is helpful to word the definitions in a more specific way that applies directly to waves:

  • Amplitude—distance between the resting position and the maximum displacement of the wave
  • Frequency—number of waves passing by a specific point per second
  • Period—time it takes for one wave cycle to complete

In addition to amplitude, frequency, and period, their wavelength and wave velocity also characterize waves. The wavelength λ λ is the distance between adjacent identical parts of a wave, parallel to the direction of propagation. The wave velocity v w v w is the speed at which the disturbance moves.

Wave velocity is sometimes also called the propagation velocity or propagation speed because the disturbance propagates from one location to another.

Consider the periodic water wave in Figure 13.7. Its wavelength is the distance from crest to crest or from trough to trough. The wavelength can also be thought of as the distance a wave has traveled after one complete cycle—or one period. The time for one complete up-and-down motion is the simple water wave’s period T. In the figure, the wave itself moves to the right with a wave velocity vw. Its amplitude X is the distance between the resting position and the maximum displacement—either the crest or the trough—of the wave. It is important to note that this movement of the wave is actually the disturbance moving to the right, not the water itself; otherwise, the bird would move to the right. Instead, the seagull bobs up and down in place as waves pass underneath, traveling a total distance of 2X in one cycle. However, as mentioned in the text feature on surfing, actual ocean waves are more complex than this simplified example.

A seagull bobs up and down on a sinusoidal-shaped periodic ocean wave with a given wave velocity of νw. The wavelength λ is shown as the distance from one crest to the next crest. The amplitude X is shown as the distance between the resting position and the crest. The total distance traveled by the seagull in one cycle or period is shown as 2X.
Figure 13.7 The wave has a wavelength λ, which is the distance between adjacent identical parts of the wave. The up-and-down disturbance of the surface propagates parallel to the surface at a speed vw.

Amplitude, Period, Frequency, and Wavelength of Periodic Waves

This video is a continuation of the video “Introduction to Waves” from the "Types of Waves" section. It discusses the properties of a periodic wave: amplitude, period, frequency, wavelength, and wave velocity.

Access multimedia content

The crest of a wave is sometimes also called the peak.

Watch Physics: Amplitude, Period, Frequency and Wavelength of Periodic Waves. This video introduces several concepts of sound; amplitude, period, frequency, and wavelength of periodic waves. Access multimedia content If you are on a boat in the trough of a wave on the ocean, and the wave amplitude is 1 m , what is the wave height from your position?
  1. 1 m
  2. 2 m
  3. 4 m
  4. 8 m

Tag » What Does It Mean When A Wave's Amplitude Increases