2.9: Maximum And Minimum Values - Mathematics LibreTexts
Maybe your like
We are putting quotation marks around the word “Proof”, because we are not going to justify the fact that it suffices to analyse the quadratic approximation in equation \((*)\text{.}\) Let's temporarily suppress the arguments \((a,b)\text{.}\) If \(f_{xx}(a,b)\ne 0\text{,}\) then by completing the square we can write
\[\begin{align*} &f_{xx}\,\Delta x^2 +2f_{xy}\,\Delta x\Delta y + f_{yy}\,\Delta y^2\\ &\hskip0.5in=f_{xx}\left(\Delta x +\frac{f_{xy}}{f_{xx}}\Delta y\right)^2 +\left(f_{yy}-\frac{f_{xy}^2}{f_{xx}}\right)\,\Delta y^2\\ &\hskip0.5in=\frac{1}{f_{xx}}\left\{\big(f_{xx}\,\Delta x+f_{xy}\,\Delta y\big)^2 +\big(f_{xx}f_{yy}-f_{xy}^2\big)\,\Delta y^2\right\} \end{align*}\]
Similarly, if \(f_{yy}(a,b)\ne 0\text{,}\)
\[\begin{align*} &f_{xx}\,\Delta x^2 +2f_{xy}\,\Delta x\Delta y + f_{yy}\,\Delta y^2\\ &\hskip0.5in=\frac{1}{f_{yy}}\left\{\big(f_{xy}\,\Delta x+f_{yy}\,\Delta y\big)^2 +\big(f_{xx}f_{yy}-f_{xy}^2\big)\,\Delta x^2\right\} \end{align*}\]
Note that this algebra breaks down if \(f_{xx}(a,b)=f_{yy}(a,b)=0\text{.}\) We'll deal with that case shortly. More importantly, note that
- if \(\big(f_{xx}f_{yy}-f_{xy}^2\big) \gt 0\) then both \(f_{xx}\) and \(f_{yy}\) must be nonzero and of the same sign and furthermore, whenever \(\Delta x\) or \(\Delta y\) are nonzero,
\[\begin{align*} \left\{\big(f_{xx}\,\Delta x+f_{xy}\,\Delta y\big)^2 +\big(f_{xx}f_{yy}-f_{xy}^2\big)\,\Delta y^2\right\} & \gt 0\quad\text{and}\\ \left\{\big(f_{xy}\,\Delta x+f_{yy}\,\Delta y\big)^2 +\big(f_{xx}f_{yy}-f_{xy}^2\big)\,\Delta x^2\right\} & \gt 0 \end{align*}\]
so that, recalling \((*)\text{,}\)
- if \(f_{xx}(a,b) \gt 0\text{,}\) then \((a,b)\) is a local minimum and
- if \(f_{xx}(a,b) \lt 0\text{,}\) then \((a,b)\) is a local maximum.
- If \(\big(f_{xx}f_{yy}-f_{xy}^2\big) \lt 0\) and \(f_{xx}\) is nonzero then
\[ \left\{\big(f_{xx}\,\Delta x+f_{xy}\,\Delta y\big)^2 +\big(f_{xx}f_{yy}-f_{xy}^2\big)\,\Delta y^2\right\} \nonumber \]
is strictly positive whenever \(\Delta x\ne 0\text{,}\) \(\Delta y= 0\) and is strictly negative whenever \(f_{xx}\,\Delta x+f_{xy}\,\Delta y=0\text{,}\) \(\Delta y\ne 0\text{,}\) so that \((a,b)\) is a saddle point. Similarly, \((a,b)\) is also a saddle point if \(\big(f_{xx}f_{yy}-f_{xy}^2\big) \lt 0\) and \(f_{yy}\) is nonzero. - Finally, if \(f_{xy}\ne 0\) and \(f_{xx}=f_{yy}=0\text{,}\) then
\[ f_{xx}\,\Delta x^2 +2f_{xy}\,\Delta x\,\Delta y + f_{yy}\,\Delta y^2 =2f_{xy}\,\Delta x\,\Delta y \nonumber \]
is strictly positive for one sign of \(\Delta x\,\Delta y\) and is strictly negative for the other sign of \(\Delta x\,\Delta y\text{.}\) So \((a,b)\) is again a saddle point.
Tag » How To Find The Local Maximum And Minimum
-
Finding Maxima And Minima Using Derivatives - Math Is Fun
-
Local Maximum And Minimum - Cuemath
-
Finding Local Maximum And Minimum Values Of A Function - YouTube
-
Finding Local Maxima And Minima By Differentiation - YouTube
-
Maximum & Minimum Examples | How To Find Local Max & Min
-
Local Minima And Maxima (First Derivative Test) - Math Insight
-
5.1 Maxima And Minima
-
Maximum And Minimum - Maths First - Massey University
-
Calculus 1 : How To Find Local Maximum Graphing Functions Of Curves
-
Calculus 1 : How To Find Local Minimum Graphing Functions Of Curves
-
How To Find Local Extrema With The First Derivative Test - Dummies
-
Find The Local Maximum And Local Minimum Values X−10(x−1)(x−6)
-
How Do I Find The Maxima And Minima Of A Function? - MyTutor
-
How To Find A Local Maximum And Local Minimum Of A Function?