28 (number) - Wikipedia

For the card game, see Twenty-eight (card game). Natural number
← 27 28 29 →
← 20 21 22 23 24 25 26 27 28 29 →
  • List of numbers
  • Integers
← 0 10 20 30 40 50 60 70 80 90 →
Cardinaltwenty-eight
Ordinal28th(twenty-eighth)
Factorization22 × 7
Divisors1, 2, 4, 7, 14, 28
Greek numeralΚΗ´
Roman numeralXXVIII, xxviii
Binary111002
Ternary10013
Senary446
Octal348
Duodecimal2412
Hexadecimal1C16

28 (twenty-eight) is the natural number following 27 and preceding 29.

In mathematics

[edit]
The number 28 depicted as 28 balls arranged in a triangular pattern with the number of layers of 7
28 as the sum of four nonzero squares.

Twenty-eight is a composite number and the second perfect number as it is the sum of its proper divisors: 1 + 2 + 4 + 7 + 14 = 28 {\displaystyle 1+2+4+7+14=28} . As a perfect number, it is related to the Mersenne prime 7, since 2 3 − 1 × ( 2 3 − 1 ) = 28 {\displaystyle 2^{3-1}\times (2^{3}-1)=28} . The next perfect number is 496, the previous being 6.[1]

Though perfect, 28 is not the aliquot sum of any other number other than itself; thus, it is not part of a multi-number aliquot sequence.

Twenty-eight is the sum of the totient function for the first nine integers.[2]

Since the greatest prime factor of 28 2 + 1 = 785 {\displaystyle 28^{2}+1=785} is 157, which is more than 28 twice, 28 is a Størmer number.[3]

Twenty-eight is a harmonic divisor number,[4] a happy number,[5] the 7th triangular number,[6] a hexagonal number,[7] a Leyland number of the second kind[8] ( 2 6 − 6 2 {\displaystyle 2^{6}-6^{2}} ), and a centered nonagonal number.[9]

It appears in the Padovan sequence, preceded by the terms 12, 16, 21 (it is the sum of the first two of these).[10]

It is also a Keith number, because it recurs in a Fibonacci-like sequence started from its decimal digits: 2, 8, 10, 18, 28...[11]

There are 28 convex uniform honeycombs.

Twenty-eight is the only positive integer that has a unique Kayles nim-value.

Twenty-eight is the only known number that can be expressed as a sum of the first positive integers ( 1 + 2 + 3 + 4 + 5 + 6 + 7 {\displaystyle 1+2+3+4+5+6+7} ), a sum of the first primes ( 2 + 3 + 5 + 7 + 11 {\displaystyle 2+3+5+7+11} ), and a sum of the first nonprimes ( 1 + 4 + 6 + 8 + 9 {\displaystyle 1+4+6+8+9} ), and it is unlikely that any other number has this property.[12]

There are twenty-eight oriented diffeomorphism classes of manifolds homeomorphic to the 7-sphere.[citation needed]

There are 28 non-equivalent ways of expressing 1000 as the sum of two prime numbers.[13]

Twenty-eight is the smallest number that can be expressed as the sum of four nonzero squares in (at least) three ways: 5 2 + 1 2 + 1 2 + 1 2 {\displaystyle 5^{2}+1^{2}+1^{2}+1^{2}} , 4 2 + 2 2 + 2 2 + 2 2 {\displaystyle 4^{2}+2^{2}+2^{2}+2^{2}} or 3 2 + 3 2 + 3 2 + 1 2 {\displaystyle 3^{2}+3^{2}+3^{2}+1^{2}} (see image).[14][15]

In science

[edit]
  • The fourth magic number in physics.

In other fields

[edit]

Twenty-eight is:

  • Deriving from the 29.46 year period of Saturn's revolution around the Sun, the 28-year cycle as well as its subdivisions by 14 and 7 are supposed in astrology to mark significant turning points or sections in the course of a person's development in life. Thus, the number 28 has special significance in the culture of religious sects such as the Kadiri and the Mevlevi dervishes. The 28-beat metric pattern often used in the music compositions accompanying the main part of the Mevlevi sema ritual is called the "Devri kebir", meaning the "Big Circle" and is a reference to above astronomical facts about the year and the Saturn year.
  • In Quebec, François Pérusse, in one of his best-selling Album du peuple made a parody of Wheel of Fortune in which all of the letters picked by the contestant were present 28 times. As a result, 28 became an almost mythical number used by many Quebec youths, the phrase "Y'en a 28" (There are 28 [Letters]) became a running gag still used and recognized more than 15 years later.
  • Approximately the number of grams in an ounce, and used as such in commercial trade.

References

[edit]
  1. ^ "Sloane's A000396 : Perfect numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved May 31, 2016.
  2. ^ "Sloane's A002088 : Sum of totient function". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved May 31, 2016.
  3. ^ "Sloane's A005528 : Størmer numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved May 31, 2016.
  4. ^ "Sloane's A001599 : Harmonic or Ore numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved May 31, 2016.
  5. ^ "Sloane's A007770 : Happy numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved May 31, 2016.
  6. ^ "Sloane's A000217 : Triangular numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved May 31, 2016.
  7. ^ "Sloane's A000384 : Hexagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved May 31, 2016.
  8. ^ Sloane, N. J. A. (ed.). "Sequence A045575 (Leyland numbers of the second kind)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  9. ^ "Sloane's A060544 : Centered 9-gonal (also known as nonagonal or enneagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved May 31, 2016.
  10. ^ "Sloane's A000931 : Padovan sequence". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved May 31, 2016.
  11. ^ "Sloane's A007629 : Repfigit (REPetitive FIbonacci-like diGIT) numbers (or Keith numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved May 31, 2016.
  12. ^ "Intersection between the sums of the first positive integers, primes and non primes". mathoverflow.net. Retrieved April 2, 2018.
  13. ^ Sloane, N. J. A. (ed.). "Sequence A065577 (Number of Goldbach partitions of 10^n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved August 31, 2023.
  14. ^ A025368
  15. ^ A025359
[edit]
  • Prime Curios! 28 from the Prime Pages
  • v
  • t
  • e
Z {\displaystyle \mathbb {Z} } Integers
−2, −1
0 to 199
0 to 99100 to 199
  •  0 
  •  1 
  •  2 
  •  3 
  •  4 
  •  5 
  •  6 
  •  7 
  •  8 
  •  9 
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
200 to 399
200 to 299300 to 399
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288
  • 289
  • 290
  • 291
  • 292
  • 293
  • 294
  • 295
  • 296
  • 297
  • 298
  • 299
  • 300
  • 301
  • 302
  • 303
  • 304
  • 305
  • 306
  • 307
  • 308
  • 309
  • 310
  • 311
  • 312
  • 313
  • 314
  • 315
  • 316
  • 317
  • 318
  • 319
  • 320
  • 321
  • 322
  • 323
  • 324
  • 325
  • 326
  • 327
  • 328
  • 329
  • 330
  • 331
  • 332
  • 333
  • 334
  • 335
  • 336
  • 337
  • 338
  • 339
  • 340
  • 341
  • 342
  • 343
  • 344
  • 345
  • 346
  • 347
  • 348
  • 349
  • 350
  • 351
  • 352
  • 353
  • 354
  • 355
  • 356
  • 357
  • 358
  • 359
  • 360
  • 361
  • 362
  • 363
  • 364
  • 365
  • 366
  • 367
  • 368
  • 369
  • 370
  • 371
  • 372
  • 373
  • 374
  • 375
  • 376
  • 377
  • 378
  • 379
  • 380
  • 381
  • 382
  • 383
  • 384
  • 385
  • 386
  • 387
  • 388
  • 389
  • 390
  • 391
  • 392
  • 393
  • 394
  • 395
  • 396
  • 397
  • 398
  • 399
400 to 999
400s, 500s, and 600s700s, 800s, and 900s
  • 400
    • 420
    • 440
    • 495
    • 496
  • 500
    • 501
    • 511
    • 512
    • 555
  • 600
    • 610
    • 613
    • 616
    • 666
    • 693
  • 700
    • 720
    • 743
    • 744
    • 777
    • 786
  • 800
    • 801
    • 836
    • 840
    • 880
    • 881
    • 888
  • 900
    • 911
    • 971
    • 987
    • 999
1000s and 10,000s
1000s
  • 1000
    • 1001
    • 1023
    • 1024
    • 1089
    • 1093
    • 1105
    • 1234
    • 1289
    • 1458
    • 1510
    • 1728
    • 1729
    • 1980
    • 1987
  • 2000
    • 2016
    • 2520
  • 3000
    • 3511
  • 4000
    • 4104
  • 5000
    • 5040
  • 6000
    • 6174
  • 7000
    • 7744
    • 7825
  • 8000
    • 8128
    • 8192
  • 9000
    • 9855
    • 9999
10,000s
  • 10,000
    • 16,807
  • 20,000
  • 30,000
  • 40,000
  • 50,000
  • 60,000
    • 64,079
    • 65,535
    • 65,536
    • 65,537
  • 70,000
  • 80,000
  • 90,000
100,000s to 10,000,000,000,000s
  • 100,000
    • 142,857
    • 144,000
  • 1,000,000
  • 10,000,000
    • 43,112,609
  • 100,000,000
  • 1,000,000,000
    • 2,147,483,647
    • 4,294,967,295
  • 10,000,000,000
  • 100,000,000,000
  • 1,000,000,000,000
  • 10,000,000,000,000
Large numbers

Tag » What Does The Number 28 Mean