7.3: How To Build Molecular Orbitals - Chemistry LibreTexts

Introduction

Although VSEPR and the Valence Bond theory accurately predict bond properties, they fail to fully explain some molecules. The MO theory incorporates the wave character of electrons in developing MO diagrams. MO diagrams predict physical and chemical properties of a molecule such as shape, bond energy, bond length and bond angle. They also provide information in predicting a molecule’s electronic spectra and paramagnetism. The objective of this wiki is to provide readers with the fundamental steps in constructing simple homonuclear and heteronuclear diatomic molecular orbital diagrams. These steps may then be extrapolated to construct more difficult polyatomic diagrams.

Molecular Orbitals: The region an electron is most likely to be found in a molecule. A MO is defined as the combination of atomic orbitals.

Homonuclear Diatomics: Molecules consisting of two identical atoms are said to be homonuclear diatomic, such as: H2, N2, O2, and F2.

Heteronuclear Diatomics: Molecules consisting of two non-identical atoms are said to be heteronuclear diatomic, such as: CO, NO, HF, and LiF.

Bonding and Antibonding Orbitals: Orbitals that are out-of-phase with one of another are "antibonding" orbitals because regions with dense electron probabilities do not merge which destabilizes the molecule. "Bonding" orbitals are less energetic than antibonding atomic orbitals and are in-phase, as depicted in the figure below. Note how the bonding orbitals come together constructively, while the antibonding orbitals do not.

Phases and nodes Phases are designated either (+) or (-) relative to their wave "up" or wave "down" displacements. A node occurs if the phase signs change from (+) to (-) or vice versa. It is important to notice that the phase signs do NOT symbolize charges. Nodes are regions where the probability of finding an electron is ZERO.

Sigma and Pi Bonds A sigma-bond is an "end-to-end" bond formed from symmetric atomic orbitals. A pi-bond is formed from a "sideways" overlap.

General Notes on Molecular Orbital Diagrams

  1. The Y-axis of a MO diagram represents the total energy (not potential nor Gibbs Energy) of the orbitals.
  2. Individual atomic orbitals (AO) are arranged on the far left and far right of the diagram.
  3. Overlapping atomic orbitals produce molecular orbitals located in the middle of the diagram. These MO overlap with either a sigma or pi bond and are designated in bonding, nonbonding, or antibonding orbitals with respect to their phases.
  4. Electrons from the atomic orbitals are assigned molecular orbitals in accordance with the Pauli Exclusion Principle. Lower energy MOs are filled first, followed by consecutively increasing orbitals.

Tag » How To Draw Molecular Orbital Diagram