Calculating A Ka Value From A Known PH - Chemistry LibreTexts
Maybe your like
Search Toolbar Homework Exit Reader Mode - Campus Bookshelves
- Bookshelves
- Learning Objects
- Login
- Request Instructor Account
- Instructor Commons
Search
Search this book Submit Searchx
Text Color
Reset BrightBluesGrayInvertedText Size
Reset +-Margin Size
Reset +-Font Type
Enable Dyslexic Font xselected template will load here
This action is not available.
Enter Reader Mode Ionization ConstantsAcids and Bases{ }{ Acid_and_Base_Strength : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass232_0.<PageSubPageProperty>b__1]()", Calculating_A_Ka_Value_From_A_Measured_Ph : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass232_0.<PageSubPageProperty>b__1]()", Calculating_Equilibrium_Concentrations : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass232_0.<PageSubPageProperty>b__1]()", Fundamentals_of_Ionization_Constants : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass232_0.<PageSubPageProperty>b__1]()", Weak_Acids_and_Bases : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass232_0.<PageSubPageProperty>b__1]()", Weak_Acids_and_Bases_1 : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass232_0.<PageSubPageProperty>b__1]()" }{ Acid : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass232_0.<PageSubPageProperty>b__1]()", Acids_and_Bases_in_Aqueous_Solutions : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass232_0.<PageSubPageProperty>b__1]()", Acid_and_Base_Indicators : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass232_0.<PageSubPageProperty>b__1]()", Acid_Base_Reactions : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass232_0.<PageSubPageProperty>b__1]()", Acid_Base_Titrations : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass232_0.<PageSubPageProperty>b__1]()", Buffers : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass232_0.<PageSubPageProperty>b__1]()", Buffers_II : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass232_0.<PageSubPageProperty>b__1]()", Ionization_Constants : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass232_0.<PageSubPageProperty>b__1]()", Monoprotic_Versus_Polyprotic_Acids_And_Bases : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass232_0.<PageSubPageProperty>b__1]()" }Mon, 30 Jan 2023 07:57:36 GMTCalculating a Ka Value from a Known pH13151315admin{ }AnonymousAnonymous User2falsefalse[ "article:topic", "pH", "Ionization Constants", "showtoc:no", "license:ccbyncsa", "licenseversion:40" ][ "article:topic", "pH", "Ionization Constants", "showtoc:no", "license:ccbyncsa", "licenseversion:40" ]https://chem.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fchem.libretexts.org%2FBookshelves%2FPhysical_and_Theoretical_Chemistry_Textbook_Maps%2FSupplemental_Modules_(Physical_and_Theoretical_Chemistry)%2FAcids_and_Bases%2FIonization_Constants%2FCalculating_A_Ka_Value_From_A_Measured_Ph
- Sign in
- Forgot password
- Home
- Bookshelves
- Physical & Theoretical Chemistry
- Supplemental Modules (Physical and Theoretical Chemistry)
- Acids and Bases
- Ionization Constants
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\dsum}{\displaystyle\sum\limits} \)
\( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\dlim}{\displaystyle\lim\limits} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\(\newcommand{\longvect}{\overrightarrow}\)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\) Table of contents- Definitions
- Howto: Solving for \(K_a\)
- Example \(\PageIndex{1}\)
- Solution
- References
- Contributors and Attributions
The quantity pH, or "power of hydrogen," is a numerical representation of the acidity or basicity of a solution. It can be used to calculate the concentration of hydrogen ions [H+] or hydronium ions [H3O+] in an aqueous solution. Solutions with low pH are the most acidic, and solutions with high pH are most basic.
Definitions
Although pH is formally defined in terms of activities, it is often estimated using free proton or hydronium concentration:
\[ pH \approx -\log[H_3O^+] \label{eq1}\]
or
\[ pH \approx -\log[H^+] \label{eq2}\]
\(K_a\), the acid ionization constant, is the equilibrium constant for chemical reactions involving weak acids in aqueous solution. The numerical value of \(K_a\) is used to predict the extent of acid dissociation. A large \(K_a\) value indicates a stronger acid (more of the acid dissociates) and small \(K_a\) value indicates a weaker acid (less of the acid dissociates).
For a chemical equation of the form
\[ HA + H_2O \leftrightharpoons H_3O^+ + A^- \]
\(K_a\) is express as
\[ K_a = \dfrac{[H_3O^+][A^-]}{[HA]} \label{eq3} \]
where
- \(HA\) is the undissociated acid and
- \(A^-\) is the conjugate base of the acid.
Since \(H_2O\) is a pure liquid, it has an activity equal to one and is ignored in the equilibrium constant expression in (Equation \ref{eq3}) like in other equilibrium constants.
Howto: Solving for \(K_a\)
When given the pH value of a solution, solving for \(K_a\) requires the following steps:
- Set up an ICE table for the chemical reaction.
- Solve for the concentration of \(\ce{H3O^{+}}\) using the equation for pH: \[ [H_3O^+] = 10^{-pH} \]
- Use the concentration of \(\ce{H3O^{+}}\) to solve for the concentrations of the other products and reactants.
- Plug all concentrations into the equation for \(K_a\) and solve.
Example \(\PageIndex{1}\)
Calculate the \(K_a\) value of a 0.2 M aqueous solution of propionic acid (\(\ce{CH3CH2CO2H}\)) with a pH of 4.88.
\[ \ce{CH_3CH_2CO_2H + H_2O \leftrightharpoons H_3O^+ + CH_3CH_2CO_2^- } \nonumber\]
Solution
ICE TABLE
| ICE | \(\ce{ CH_3CH_2CO_2H }\) | \(\ce{ H_3O^+ }\) | \(\ce{ CH_3CH_2CO_2^- }\) |
|---|---|---|---|
| Initial Concentration (M) | 0.2 | 0 | 0 |
| Change in Concentration (M) | -x | +x | +x |
| Equilibrium Concentration (M) | 0.2 - x | x | x |
According to the definition of pH (Equation \ref{eq1})
\[\begin{align*} -pH = \log[H_3O^+] &= -4.88 \\[4pt] [H_3O^+] &= 10^{-4.88} \\[4pt] &= 1.32 \times 10^{-5} \\[4pt] &= x \end{align*}\]
According to the definition of \(K_a\) (Equation \ref{eq3}
\[\begin{align*} K_a &= \dfrac{[H_3O^+][CH_3CH_2CO_2^-]}{[CH_3CH_2CO_2H]} \\[4pt] &= \dfrac{x^2}{0.2 - x} \\[4pt] &= \dfrac{(1.32 \times 10^{-5})^2}{0.2 - 1.32 \times 10^{-5}} \\[4pt] &= 8.69 \times 10^{-10} \end{align*}\]
References
- Petrucci,et al. General Chemistry:Principles & Modern Applications; Ninth Edition, Pearson/Prentice Hall; Upper Saddle River, New Jersey 07.
Contributors and Attributions
- Paige Norberg (UCD) and Gabriela Mastro (UCD)
Calculating a Ka Value from a Known pH is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.
- Back to top
- Acid and Base Strength
- Calculating Equilibrium Concentrations
- © Copyright 2026 Chemistry LibreTexts
- Powered by CXone Expert ®
The LibreTexts libraries are Powered by NICE CXone Expert and are supported by the Department of Education Open Textbook Pilot Project, the UC Davis Office of the Provost, the UC Davis Library, the California State University Affordable Learning Solutions Program, and Merlot. We also acknowledge previous National Science Foundation support under grant numbers 1246120, 1525057, and 1413739. Privacy Policy. Terms & Conditions. Accessibility Statement. For more information contact us at [email protected].
Tag » How To Find Ka With Ph
-
How To Calculate Ka From Ph - Sciencing
-
How To Find Ka - Byju's
-
How To Find The Ka Of An Acid When Given PH - YouTube
-
Find The Ka Of An Acid (Given PH) (0.1 M Hypochlorous ... - YouTube
-
Calculating Ka From PH - YouTube
-
Finding Ka Of A Weak Acid From PH - YouTube
-
Ka From PH And A Concentration - YouTube
-
How To Calculate The Ka Of A Weak Acid From PH
-
Using Ka To Calculate PH Of Weak Acids - Chemistry Made Simple
-
How Do You Solve For Ka When You Only Have Molarity Of The Acid ...
-
Calculating The PH Of A Salt Solution
-
PH And POH - Acid-Base Equilibria
-
[PDF] Ka For Unknown Acid
-
What Are Some Ways Of Finding PH From Ka? - Quora