Calculating A Ka Value From A Known PH - Chemistry LibreTexts

Library homepage Search Toolbar Homework Exit Reader Mode
  • Campus Bookshelves
  • Bookshelves
  • Learning Objects
  • Login
  • Request Instructor Account
  • Instructor Commons

Search

Search this book Submit Search

x

Text Color

Reset BrightBluesGrayInverted

Text Size

Reset +-

Margin Size

Reset +-

Font Type

Enable Dyslexic Font
  • Downloads
  • Resources
  • Reference
  • Tools
  • Help
x

selected template will load here

This action is not available.

Library homepage Enter Reader Mode Ionization ConstantsAcids and Bases{ }{ Acid_and_Base_Strength : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass232_0.<PageSubPageProperty>b__1]()", Calculating_A_Ka_Value_From_A_Measured_Ph : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass232_0.<PageSubPageProperty>b__1]()", Calculating_Equilibrium_Concentrations : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass232_0.<PageSubPageProperty>b__1]()", Fundamentals_of_Ionization_Constants : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass232_0.<PageSubPageProperty>b__1]()", Weak_Acids_and_Bases : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass232_0.<PageSubPageProperty>b__1]()", Weak_Acids_and_Bases_1 : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass232_0.<PageSubPageProperty>b__1]()" }{ Acid : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass232_0.<PageSubPageProperty>b__1]()", Acids_and_Bases_in_Aqueous_Solutions : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass232_0.<PageSubPageProperty>b__1]()", Acid_and_Base_Indicators : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass232_0.<PageSubPageProperty>b__1]()", Acid_Base_Reactions : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass232_0.<PageSubPageProperty>b__1]()", Acid_Base_Titrations : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass232_0.<PageSubPageProperty>b__1]()", Buffers : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass232_0.<PageSubPageProperty>b__1]()", Buffers_II : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass232_0.<PageSubPageProperty>b__1]()", Ionization_Constants : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass232_0.<PageSubPageProperty>b__1]()", Monoprotic_Versus_Polyprotic_Acids_And_Bases : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass232_0.<PageSubPageProperty>b__1]()" }Mon, 30 Jan 2023 07:57:36 GMTCalculating a Ka Value from a Known pH13151315admin{ }AnonymousAnonymous User2falsefalse[ "article:topic", "pH", "Ionization Constants", "showtoc:no", "license:ccbyncsa", "licenseversion:40" ][ "article:topic", "pH", "Ionization Constants", "showtoc:no", "license:ccbyncsa", "licenseversion:40" ]https://chem.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fchem.libretexts.org%2FBookshelves%2FPhysical_and_Theoretical_Chemistry_Textbook_Maps%2FSupplemental_Modules_(Physical_and_Theoretical_Chemistry)%2FAcids_and_Bases%2FIonization_Constants%2FCalculating_A_Ka_Value_From_A_Measured_Ph Chemistry LibreTexts
  • Sign in
  • Forgot password
Search Search
  • Home
  • Bookshelves
  • Physical & Theoretical Chemistry
  • Supplemental Modules (Physical and Theoretical Chemistry)
  • Acids and Bases
  • Ionization Constants
Calculating a Ka Value from a Known pH Last updated:
  • Page ID1315
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\dsum}{\displaystyle\sum\limits} \)

    \( \newcommand{\dint}{\displaystyle\int\limits} \)

    \( \newcommand{\dlim}{\displaystyle\lim\limits} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \(\newcommand{\longvect}{\overrightarrow}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\) Table of contents
    1. Definitions
      1. Howto: Solving for \(K_a\)
      2. Example \(\PageIndex{1}\)
        1. Solution
    2. References
    3. Contributors and Attributions

    The quantity pH, or "power of hydrogen," is a numerical representation of the acidity or basicity of a solution. It can be used to calculate the concentration of hydrogen ions [H+] or hydronium ions [H3O+] in an aqueous solution. Solutions with low pH are the most acidic, and solutions with high pH are most basic.

    Definitions

    Although pH is formally defined in terms of activities, it is often estimated using free proton or hydronium concentration:

    \[ pH \approx -\log[H_3O^+] \label{eq1}\]

    or

    \[ pH \approx -\log[H^+] \label{eq2}\]

    \(K_a\), the acid ionization constant, is the equilibrium constant for chemical reactions involving weak acids in aqueous solution. The numerical value of \(K_a\) is used to predict the extent of acid dissociation. A large \(K_a\) value indicates a stronger acid (more of the acid dissociates) and small \(K_a\) value indicates a weaker acid (less of the acid dissociates).

    For a chemical equation of the form

    \[ HA + H_2O \leftrightharpoons H_3O^+ + A^- \]

    \(K_a\) is express as

    \[ K_a = \dfrac{[H_3O^+][A^-]}{[HA]} \label{eq3} \]

    where

    • \(HA\) is the undissociated acid and
    • \(A^-\) is the conjugate base of the acid.

    Since \(H_2O\) is a pure liquid, it has an activity equal to one and is ignored in the equilibrium constant expression in (Equation \ref{eq3}) like in other equilibrium constants.

    Howto: Solving for \(K_a\)

    When given the pH value of a solution, solving for \(K_a\) requires the following steps:

    1. Set up an ICE table for the chemical reaction.
    2. Solve for the concentration of \(\ce{H3O^{+}}\) using the equation for pH: \[ [H_3O^+] = 10^{-pH} \]
    3. Use the concentration of \(\ce{H3O^{+}}\) to solve for the concentrations of the other products and reactants.
    4. Plug all concentrations into the equation for \(K_a\) and solve.
    Example \(\PageIndex{1}\)

    Calculate the \(K_a\) value of a 0.2 M aqueous solution of propionic acid (\(\ce{CH3CH2CO2H}\)) with a pH of 4.88.

    \[ \ce{CH_3CH_2CO_2H + H_2O \leftrightharpoons H_3O^+ + CH_3CH_2CO_2^- } \nonumber\]

    Solution

    ICE TABLE

    ICE \(\ce{ CH_3CH_2CO_2H }\) \(\ce{ H_3O^+ }\) \(\ce{ CH_3CH_2CO_2^- }\)
    Initial Concentration (M) 0.2 0 0
    Change in Concentration (M) -x +x +x
    Equilibrium Concentration (M) 0.2 - x x x

    According to the definition of pH (Equation \ref{eq1})

    \[\begin{align*} -pH = \log[H_3O^+] &= -4.88 \\[4pt] [H_3O^+] &= 10^{-4.88} \\[4pt] &= 1.32 \times 10^{-5} \\[4pt] &= x \end{align*}\]

    According to the definition of \(K_a\) (Equation \ref{eq3}

    \[\begin{align*} K_a &= \dfrac{[H_3O^+][CH_3CH_2CO_2^-]}{[CH_3CH_2CO_2H]} \\[4pt] &= \dfrac{x^2}{0.2 - x} \\[4pt] &= \dfrac{(1.32 \times 10^{-5})^2}{0.2 - 1.32 \times 10^{-5}} \\[4pt] &= 8.69 \times 10^{-10} \end{align*}\]

    References

    1. Petrucci,et al. General Chemistry:Principles & Modern Applications; Ninth Edition, Pearson/Prentice Hall; Upper Saddle River, New Jersey 07.

    Contributors and Attributions

    • Paige Norberg (UCD) and Gabriela Mastro (UCD)

    Calculating a Ka Value from a Known pH is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    1. Back to top
      • Acid and Base Strength
      • Calculating Equilibrium Concentrations
    1. © Copyright 2026 Chemistry LibreTexts
    2. Powered by CXone Expert ®

    The LibreTexts libraries are Powered by NICE CXone Expert and are supported by the Department of Education Open Textbook Pilot Project, the UC Davis Office of the Provost, the UC Davis Library, the California State University Affordable Learning Solutions Program, and Merlot. We also acknowledge previous National Science Foundation support under grant numbers 1246120, 1525057, and 1413739. Privacy Policy. Terms & Conditions. Accessibility Statement. For more information contact us at [email protected].

    Tag » How To Find Ka With Ph