Collinear Points Calculator

We use cookies to improve your experience on our site and to show you relevant advertising. By browsing this website, you agree to our use of cookies. Learn more

AtoZmath.com
Support us
(New) All problem can be solved using search box
I want to sell my website www.AtoZmath.com with complete code
Home What's new College Algebra Games Feedback About us
Algebra Matrix & Vector Numerical Methods Statistical Methods Operation Research Word Problems Calculus Geometry Pre-Algebra
Home > Geometry calculators > Coordinate Geometry > Collinear points calculator
Method and examples
Method 1. Distance, Slope from two points 2. Points (3 or 4) are Collinear or Triangle or Quadrilateral form 3. Find Ratio of line joining AB and is divided by P 4. Midpoint or Trisection points or equidistant points on X-Y axis 5. Find Centroid, Circumcenter, Area of a triangle 6. Find equation of a line using slope, point, X-intercept, Y-intercept 7. Find Slope, X-intercept, Y-intercept of a line 8. Find line passing through intersection point of two lines and slope or a point 9. Find line passing through a point and parallel or perpendicular to Line-2 10. Find line passing through intersection point Line-1,Line-2 parallel to Line-3 11. Find Angle, intersection point and determine if parallel lines 12. Reflection of points about x-axis, y-axis, origin
Determine if the points are Collinear points
Collinear points
2. Points are Collinear or Triangle or Quadrilateral form
Show that the points are the vertices of 0. auto decide 1. Collinear points (ABC) 2. right angle triangle (ABC) 3. equilateral triangle (ABC) 4. isosceles triangle (ABC) 5. Collinear points (ABCD) 6. square (ABCD) 7. rectangle (ABCD) 8. rhombus (ABCD) 9. parallelogram (ABCD)
Find `A(0,0), B(2,2), C(0,4), D(-2,2)` are vertices of a square or not A ( , ) , B ( , ) , C ( , ) , D ( , )
  1. `A(1,5),B(2,3),C(-2,-11)` are collinear points
  2. `A(1,-3),B(2,-5),C(-4,7)` are collinear points
  3. `A(-1,-1),B(1,5),C(2,8)` are collinear points
  4. `A(0,-1),B(3,5),C(5,9)` are collinear points
  5. `A(2,8),B(1,5),C(0,2)` are collinear points
  6. `A(-1,-1),B(1,5),C(2,8)` are collinear points
  7. `A(0,0),B(0,3),C(4,0)` are vertices of a right angle triangle
  8. `A(2,5),B(8,5),C(5,10.196152)` are vertices of an equilateral triangle
  9. `A(2,2),B(-2,4),C(2,6)` are vertices of an isosceles triangle
  10. `A(0,0),B(2,0),C(-4,0),D(-2,0)` are collinear points
  11. `A(3,2),B(5,4),C(3,6),D(1,4)` are vertices of a square
  12. `A(1,-1),B(-2,2),C(4,8),D(7,5)` are vertices of a rectangle
  13. `A(3,0),B(4,5),C(-1,4),D(-2,-1)` are vertices of a rhombus
  14. `A(2,3),B(7,4),C(8,7),D(3,6)` are vertices of a parallelogram
Mode = Decimal Fraction
Decimal Place = 0 1 2 3 4 5 6 7 8 9 10
SolutionMethods
Solution
Solution provided by AtoZmath.com
Determine if the points are Collinear points calculator
1. Determine if the points `A(1,5), B(2,3), C(-2,-11)` are collinear points 2. Determine if the points `A(1,-3), B(2,-5), C(-4,7)` are collinear points 3. Determine if the points `A(-1,-1), B(1,5), C(2,8)` are collinear points 4. Determine if the points `A(0,-1), B(3,5), C(5,9)` are collinear points 5. Determine if the points `A(2,8), B(1,5), C(0,2)` are collinear points
Example1. Determine if the points `A(1,5), B(2,3), C(-2,-11)` are collinear pointsSolution:We know that the distance between the two points `(x_1,y_1)` and `(x_2,y_2)` is `d=sqrt((x_2-x_1)^2+(y_2-y_1)^2)`The given points are `A(1,5),B(2,3),C(-2,-11)``AB=sqrt((2-1)^2+(3-5)^2)``=sqrt((1)^2+(-2)^2)``=sqrt(1+4)``=sqrt(5)``:. AB=sqrt(5)``BC=sqrt((-2-2)^2+(-11-3)^2)``=sqrt((-4)^2+(-14)^2)``=sqrt(16+196)``=sqrt(212)``:. BC=2sqrt(53)``AC=sqrt((-2-1)^2+(-11-5)^2)``=sqrt((-3)^2+(-16)^2)``=sqrt(9+256)``=sqrt(265)``:. AC=sqrt(265)`As, AC > AB and AC > BCIf points A, B and C are collinear then AB + BC = ACBut `sqrt(5)+2sqrt(53)=16.7963!=sqrt(265)``:.` A,B,C are not collinear points 2. Determine if the points `A(1,-3), B(2,-5), C(-4,7)` are collinear pointsSolution:We know that the distance between the two points `(x_1,y_1)` and `(x_2,y_2)` is `d=sqrt((x_2-x_1)^2+(y_2-y_1)^2)`The given points are `A(1,-3),B(2,-5),C(-4,7)``AB=sqrt((2-1)^2+(-5+3)^2)``=sqrt((1)^2+(-2)^2)``=sqrt(1+4)``=sqrt(5)``:. AB=sqrt(5)``BC=sqrt((-4-2)^2+(7+5)^2)``=sqrt((-6)^2+(12)^2)``=sqrt(36+144)``=sqrt(180)``:. BC=6sqrt(5)``AC=sqrt((-4-1)^2+(7+3)^2)``=sqrt((-5)^2+(10)^2)``=sqrt(25+100)``=sqrt(125)``:. AC=5sqrt(5)`As, BC > AB and BC > ACIf points A, B and C are collinear then AB + AC = BCHere `sqrt(5)+5sqrt(5)=6sqrt(5)``:.` A,B,C are collinear points 3. Determine if the points `A(-1,-1), B(1,5), C(2,8)` are collinear pointsSolution:We know that the distance between the two points `(x_1,y_1)` and `(x_2,y_2)` is `d=sqrt((x_2-x_1)^2+(y_2-y_1)^2)`The given points are `A(-1,-1),B(1,5),C(2,8)``AB=sqrt((1+1)^2+(5+1)^2)``=sqrt((2)^2+(6)^2)``=sqrt(4+36)``=sqrt(40)``:. AB=2sqrt(10)``BC=sqrt((2-1)^2+(8-5)^2)``=sqrt((1)^2+(3)^2)``=sqrt(1+9)``=sqrt(10)``:. BC=sqrt(10)``AC=sqrt((2+1)^2+(8+1)^2)``=sqrt((3)^2+(9)^2)``=sqrt(9+81)``=sqrt(90)``:. AC=3sqrt(10)`As, AC > AB and AC > BCIf points A, B and C are collinear then AB + BC = ACHere `2sqrt(10)+sqrt(10)=3sqrt(10)``:.` A,B,C are collinear points 4. Determine if the points `A(0,-1), B(3,5), C(5,9)` are collinear pointsSolution:We know that the distance between the two points `(x_1,y_1)` and `(x_2,y_2)` is `d=sqrt((x_2-x_1)^2+(y_2-y_1)^2)`The given points are `A(0,-1),B(3,5),C(5,9)``AB=sqrt((3-0)^2+(5+1)^2)``=sqrt((3)^2+(6)^2)``=sqrt(9+36)``=sqrt(45)``:. AB=3sqrt(5)``BC=sqrt((5-3)^2+(9-5)^2)``=sqrt((2)^2+(4)^2)``=sqrt(4+16)``=sqrt(20)``:. BC=2sqrt(5)``AC=sqrt((5-0)^2+(9+1)^2)``=sqrt((5)^2+(10)^2)``=sqrt(25+100)``=sqrt(125)``:. AC=5sqrt(5)`As, AC > AB and AC > BCIf points A, B and C are collinear then AB + BC = ACHere `3sqrt(5)+2sqrt(5)=5sqrt(5)``:.` A,B,C are collinear points 5. Determine if the points `A(2,8), B(1,5), C(0,2)` are collinear pointsSolution:We know that the distance between the two points `(x_1,y_1)` and `(x_2,y_2)` is `d=sqrt((x_2-x_1)^2+(y_2-y_1)^2)`The given points are `A(2,8),B(1,5),C(0,2)``AB=sqrt((1-2)^2+(5-8)^2)``=sqrt((-1)^2+(-3)^2)``=sqrt(1+9)``=sqrt(10)``:. AB=sqrt(10)``BC=sqrt((0-1)^2+(2-5)^2)``=sqrt((-1)^2+(-3)^2)``=sqrt(1+9)``=sqrt(10)``:. BC=sqrt(10)``AC=sqrt((0-2)^2+(2-8)^2)``=sqrt((-2)^2+(-6)^2)``=sqrt(4+36)``=sqrt(40)``:. AC=2sqrt(10)`As, AC > AB and AC > BCIf points A, B and C are collinear then AB + BC = ACHere `sqrt(10)+sqrt(10)=2sqrt(10)``:.` A,B,C are collinear points
Share this solution or page with your friends.
Home What's new College Algebra Games Feedback About us
Copyright © 2025. All rights reserved. Terms, Privacy
. .

Tag » Collinear Or Not Calculator