Comet Tail - Wikipedia

Projection of material from a comet Diagram of a comet showing the dust tail, gas tail, and the dust trail (or anti-tail)The Great Comet of 2024 with tail (left) and anti-tail visible

A comet tail is a projection of material from a comet that often becomes visible when illuminated by the Sun, while the comet passes through the inner Solar System. As a comet approaches the Sun, solar radiation causes the volatile materials within the comet to vaporize and stream out of the comet nucleus, carrying dust away with them.

Blown by the solar wind, these materials typically form two separate tails that extend outwards from the comet's orbit: the dust tail, composed of comet dust, and the gas or ion tail, composed of ionized gases. They become visible through different mechanisms: the dust tail reflects sunlight directly, while the gas tail glows because of the ionization.

Larger dust particles are less affected by solar wind and tend to persist along the comet's trajectory, forming a dust trail which, when seen from Earth in certain conditions, appears as an anti-tail (or antitail) extending in the opposite directions to the main tail.

Tail formation

[edit]
Diagram of a comet's orbit showing how the gas and dust tails develop as the comet passes the Sun

In the outer Solar System, comets remain frozen and are extremely difficult or impossible to detect from Earth due to their small size. Statistical detections of inactive comet nuclei in the Kuiper belt have been reported from the Hubble Space Telescope observations,[1][2] but these detections have been questioned,[3][4] and have not yet been independently confirmed. As a comet approaches the inner Solar System, solar radiation causes the volatile materials within the comet to vaporize and stream out of the nucleus, carrying dust away with them. The streams of dust and gas thus released form a huge, extremely tenuous atmosphere around the comet called the coma, and the force exerted on the coma by the Sun's radiation pressure and solar wind cause an enormous tail to form, which points away from the Sun.

The streams of dust and gas each form their own distinct tails, pointing in slightly different directions. The tail of dust is left behind in the comet's orbit in such a manner that it often forms a curved tail called the antitail, only when it seems that it is directed towards the Sun. At the same time, the ion tail, made of gases, always points along the streamlines of the solar wind as it is strongly affected by the magnetic field of the plasma of the solar wind. The ion tail follows the magnetic field lines rather than an orbital trajectory. Parallax viewing from the Earth may sometimes mean the tails appear to point in opposite directions.[5]

Anti-tail

[edit]
Diagram of a comet's tails and anti-tail

The anti-tail is an apparent spike extending from the coma towards the Sun, and therefore in the opposite direction to the gas and dust tails. The anti-tail consists of larger dust particles left behind by the comet. These dust particles are less affected by the Sun's radiation pressure and tend to remain roughly in the comet's orbital plane and eventually form a disc along the comet's orbit due to the ejection speed of the particles from the comet's surface. As Earth passes through the comet's orbital plane, this disc is seen side on, and appears as the characteristic spike.[6] The other side of the disc can sometimes be seen, though it tends to be lost in the dust tail. The anti-tail is therefore normally visible for a brief interval only when Earth passes through the comet's orbital plane.[7][8]

Most comets do not develop sufficiently for an anti-tail to become visible, but notable comets that did display anti-tails include Arend–Roland in 1957,[9] Kohoutek in 1973,[10] Hale–Bopp in 1997, C/1999 H1 (Lee) in 1999,[11] Lulin in 2009, PANSTARRS and C/2022 E3 (ZTF) in 2023,[12] 12P/Pons–Brooks and C/2023 A3 Tsuchinshan–ATLAS in 2024,[13][14] and 3I/ATLAS in 2025.[15] [16]

Size

[edit]
Animation of a comet's tail

While the solid nucleus of comets is generally less than 30 km across, the coma may be larger than the Sun, and ion tails have been observed to extend 3.8 astronomical units (570 Gm; 350×10^6 mi).[17]

The Ulysses spacecraft made an unexpected pass through the tail of the comet C/2006 P1 (Comet McNaught), on February 3, 2007.[18] Evidence of the encounter was published in the October 1, 2007, issue of The Astrophysical Journal.[19][relevant?]

Magnetosphere

[edit]
Comet C/2025 A6 (Lemmon) with its tail as seen in October 2025

The observation of antitails contributed significantly to the discovery of solar wind.[20] The ion tail is the result of ultraviolet radiation ejecting electrons off particles in the coma. Once the particles have been ionised, they form a plasma which in turn induces a magnetosphere around the comet. The comet and its induced magnetic field form an obstacle to outward flowing solar wind particles. The comet is supersonic relative to the solar wind, so a bow shock is formed upstream of the comet (i.e. facing the Sun), in the flow direction of the solar wind. In this bow shock, large concentrations of cometary ions (called "pick-up ions") congregate and act to "load" the solar magnetic field with plasma. The field lines "drape" around the comet forming the ion tail.[21] (This is similar to the formation of planetary magnetospheres.)

Tail loss

[edit]
Comet Encke loses its tail.

If the ion tail loading is sufficient, then the magnetic field lines are squeezed together to the point where, at some distance along the ion tail, magnetic reconnection occurs. This leads to a "tail disconnection event".[21] This has been observed on a number of occasions, notable among which was on April 20, 2007, when the ion tail of comet Encke was completely severed as the comet passed through a coronal mass ejection.[22] This event was observed by the STEREO spacecraft.[23] A disconnection event was also seen with C/2009 R1 (McNaught) on May 26, 2010.[24]

Analogues

[edit]

Venus possesses a similar tail due to the induced magnetosphere formed by interaction of the solar wind with the venusian atmosphere. On January 29, 2013, ESA scientists reported that the ionosphere of the planet Venus streams outwards in a manner similar to "the ion tail seen streaming from a comet under similar conditions."[25][26] While Mercury lacks an atmosphere, the MESSENGER mission observed magnesium and sodium flowing off the planet, along the magnetic field lines trailing behind the planet, making them the primary components of Mercury's magnetotail.[27][citation needed]

References

[edit]
  1. ^ Cochran, A. L.; Levison, H. F.; Stern, S. A.; Duncan, J. (1995). "The Discovery of Halley-sized Kuiper Belt Objects Using the Hubble Space Telescope". The Astrophysical Journal. 455: 342. arXiv:astro-ph/9509100. Bibcode:1995ApJ...455..342C. doi:10.1086/176581. S2CID 118159645.
  2. ^ Cochran, A. L.; Levison, H. F.; Tamblyn, P.; Stern, S. A.; Duncan, J. (1998). "The Calibration of the Hubble Space Telescope Kuiper Belt Object Search: Setting the Record Straight". Astrophysical Journal Letters. 503 (1): L89. arXiv:astro-ph/9806210. Bibcode:1998ApJ...503L..89C. doi:10.1086/311515. S2CID 18215327.
  3. ^ Brown, Michael E.; Kulkarni, S. R.; Liggett, T. J. (1997). "An Analysis of the Statistics of the Hubble Space Telescope Kuiper Belt Object Search". Astrophysical Journal Letters. 490 (1): L119. Bibcode:1997ApJ...490L.119B. doi:10.1086/311009.
  4. ^ Jewitt, David C.; Luu, Jane; Chen, J. (1996). "The Mauna Kea-Cerro-Tololo (MKCT) Kuiper Belt and Centaur Survey". The Astronomical Journal. 112 (3): 1225. Bibcode:1996AJ....112.1225J. doi:10.1086/118093.
  5. ^ McKenna, M. (May 20, 2008). "Chasing an Anti-Tail". Astronomy Sketch of the Day. Retrieved February 25, 2009.
  6. ^ Boehnhardt, Hermann (2003). "The Anti-Tail of Comet C/1995 O1 (Hale–Bopp) in 1997/1998" (PDF). Earth, Moon, and Planets. 93 (1): 19–35. Bibcode:2003EM&P...93...19B. doi:10.1023/B:MOON.0000034496.28985.ef. Retrieved 17 October 2024.
  7. ^ Rao, Joe (6 February 2009). "Newfound Comet Lulin to Grace Night Skies". SPACE.com. Archived from the original on 26 February 2009. Retrieved 2009-02-25.
  8. ^ Tosar, Borja; Paolo Candy. "What is an antitail". 3.bp.blogspot. Archived from the original on 25 February 2009. Retrieved 2009-02-25.
  9. ^ David Darling (2016). "Encyclopedia of science:antitail".
  10. ^ Naugles, John E. (7 March 1974). "Statement of John E. Naugle, Associate Administrator for Space Science, NASA: Comet Kohoutek Program". Committee on Science and Astronautics U.S. House of Representatives. Hearings Before the Subcommittee on Space Science and Applications. 25 (3). Washington DC: 401. Retrieved 2021-11-10. [drawing on page 403] the Skylab crewmen observed a brilliant spike or anti tail projecting toward the Sun from the head of Kohoutek [...] Dr Zdenek Sekanina concluded that the spike was not wholly due to a perspective or geometrical effect as has been assumed in previous comet studies.
  11. ^ Kammerer, Andreas. "Analysis of past comet apparitions – C/1999 H1 (Lee)". Retrieved 2023-11-24.
  12. ^ Harry Baker (2023-01-27). "Optical illusion gives rare green comet an 'anti-tail' that seemingly defies physics". Space.com. Retrieved 2023-01-28.
  13. ^ Adrien (2024-06-15). ""The Devil's Comet reveals... an anti-tail"". techno-science.net. Retrieved 2024-10-15.
  14. ^ Bob King (2024-10-15). ""Comet Tsuchinshan-ATLAS climbs, brigthens and delights!"". SkyAndTelescope.org. Retrieved 2024-10-15. The comet displayed a strikingly narrow antitail the night of October 14th
  15. ^ Opitom, Cyrielle; Snodgrass, Colin; Jehin, Emmanuel; Bannister, Michele T.; Bufanda, Erica; Deam, Sophie E.; et al. (7 July 2025). "Snapshot of a new interstellar comet: 3I/ATLAS has a red and featureless spectrum". Monthly Notices of the Royal Astronomical Society. 544 (1): L31 – L36. arXiv:2507.05226. Bibcode:2025MNRAS.544L..31O. doi:10.1093/mnrasl/slaf095. this approximately sunward feature is reminiscent of the distant activity of other comets
  16. ^ Keto, Eric; Loeb, Abraham (9 September 2025). "The Physics of Cometary Anti-tails as Observed in 3I/ATLAS". Monthly Notices of the Royal Astronomical Society. 545 (1) staf2054. arXiv:2509.07771v1. Bibcode:2026MNRAS.545S2054K. doi:10.1093/mnras/staf2054. This type of anti-tail, not a result of perspective, may not have been previously observed. We explain the anti-tail as an anisotropic extension of the snow line, or survival radius of a sublimating ice grain, in the direction of the Sun.
  17. ^ Yeomans, Donald K. (2005). "Comet". World Book Online Reference Center. World Book. Archived from the original on April 29, 2005. Retrieved December 27, 2008.
  18. ^ "A chance encounter with a comet". Astronomy. October 2, 2007.
  19. ^ Neugebauer; et al. (2007). "Encounter of the Ulysses Spacecraft with the Ion Tail of Comet MCNaught". The Astrophysical Journal. 667 (2): 1262–1266. Bibcode:2007ApJ...667.1262N. doi:10.1086/521019.
  20. ^ Biermann, L. (1963). "The plasma tails of comets and the interplanetary plasma". Space Science Reviews. 1 (3): 553. Bibcode:1963SSRv....1..553B. doi:10.1007/BF00225271. S2CID 120731934.
  21. ^ a b Carroll, B. W.; Ostlie, D. A. (1996). An Introduction to Modern Astrophysics. Addison-Wesley. pp. 864–874. ISBN 978-0-201-54730-6.
  22. ^ "The Sun Rips Off a Comet's Tail". Science@NASA. October 1, 2007. Archived from the original on November 4, 2009. Retrieved October 20, 2009.
  23. ^ Eyles, C. J.; Harrison, R. A.; Davis, C. J.; Waltham, N. R.; Shaughnessy, B. M.; Mapson-Menard, H. C. A.; Bewsher, D.; Crothers, S. R.; Davies, J. A.; Rochus, P. (2009). "The Heliospheric Imagers Onboard the STEREO Mission". Solar Physics. 254 (2): 387–445. Bibcode:2009SoPh..254..387E. doi:10.1007/s11207-008-9299-0. hdl:2268/15675. S2CID 54977854.
  24. ^ "Comet C/2009 R1 (McNaught) - Animation & Images". Remanzacco Observatory. May 30, 2010. Retrieved June 7, 2011.
  25. ^ Staff (January 29, 2013). "When A Planet Behaves Like A Comet". ESA. Retrieved January 31, 2013.
  26. ^ Kramer, Miriam (January 30, 2013). "Venus Can Have 'Comet-Like' Atmosphere". Space.com. Retrieved January 31, 2013.
  27. ^ McClintock 2009, p. 610–611
[edit] Wikimedia Commons has media related to Comet tails.
  • Comets page at NASA's Solar System Exploration
  • International Comet Quarterly at Harvard.edu
  • 1957 photo of Comet Arend–Roland showing a prominent anti-tail
  • v
  • t
  • e
Comets
Features
  • Nucleus
  • Coma
  • Tails
  • Antitail
  • Comet dust
  • Meteor shower
Comet C/1996 B2 (Hyakutake)
Types
  • Periodic
    • Numbered
    • Lost
    • Long period
    • Halley-type
    • Jupiter-family
    • Encke-type
    • Main-belt
  • Non-periodic
    • Near-parabolic
    • Hyperbolic
    • Unknown-orbit
  • Great Comet
  • Sungrazing (Kreutz)
  • Extinct
  • Exocomet
  • Interstellar
  • Dark comet
Related
  • Naming of comets
  • Observational history of comets
  • Centaur
  • Comet discoverers
    • LINEAR
  • Extraterrestrial atmosphere
  • Oort cloud
  • Small Solar System body
  • Asteroid
Exploration
  • List of missions to comets
  • List of comets visited by spacecraft
Latest
  • C/2025 R2 (SWAN)
  • 3I/ATLAS
  • C/2025 F2 (SWAN)
  • C/2025 A6 (Lemmon)
  • C/2024 S1 (ATLAS)
  • C/2024 G3 (ATLAS)
  • C/2023 P1 (Nishimura)
  • C/2023 H2 (Lemmon)
  • C/2023 E1 (ATLAS)
  • C/2023 A3 (Tsuchinshan–ATLAS)
  • C/2022 E3 (ZTF)
  • C/2021 O3 (PanSTARRS)
  • C/2021 J1 (Maury-Attard)
  • C/2021 A1 (Leonard)
  • C/2020 S3 (Erasmus)
  • C/2020 X3 (SOHO)
  • C/2020 F8 (SWAN)
  • C/2020 F5 (MASTER)
  • C/2020 F3 (NEOWISE)
  • C/2019 Y4 (ATLAS)
  • C/2019 Y1 (ATLAS)
  • C/2019 U6 (Lemmon)
  • 2I/Borisov
  • P/2019 LD2 (ATLAS)
Culture andspeculation
  • Antimatter comet
  • Comets in fiction
  • Comet vintages
Lists of comets (more)
Periodiccomets
Until 1985(all)
  • 1P/Halley
  • 2P/Encke
  • 3D/Biela
  • 4P/Faye
  • 5D/Brorsen
  • 6P/d'Arrest
  • 7P/Pons–Winnecke
  • 8P/Tuttle
  • 9P/Tempel
  • 10P/Tempel
  • 11P/Tempel–Swift–LINEAR
  • 12P/Pons–Brooks
  • 13P/Olbers
  • 14P/Wolf
  • 15P/Finlay
  • 16P/Brooks
  • 17P/Holmes
  • 18D/Perrine–Mrkos
  • 19P/Borrelly
  • 20D/Westphal
  • 21P/Giacobini–Zinner
  • 22P/Kopff
  • 23P/Brorsen–Metcalf
  • 24P/Schaumasse
  • 25D/Neujmin
  • 26P/Grigg–Skjellerup
  • 27P/Crommelin
  • 28P/Neujmin
  • 29P/Schwassmann–Wachmann
  • 30P/Reinmuth
  • 31P/Schwassmann–Wachmann
  • 32P/Comas Solà
  • 33P/Daniel
  • 34D/Gale
  • 35P/Herschel–Rigollet
  • 36P/Whipple
  • 37P/Forbes
  • 38P/Stephan–Oterma
  • 39P/Oterma
  • 40P/Väisälä
  • 41P/Tuttle–Giacobini–Kresák
  • 42P/Neujmin
  • 43P/Wolf–Harrington
  • 44P/Reinmuth
  • 45P/Honda–Mrkos–Pajdušáková
  • 46P/Wirtanen
  • 47P/Ashbrook–Jackson
  • 48P/Johnson
  • 49P/Arend–Rigaux
  • 50P/Arend
  • 51P/Harrington
  • 52P/Harrington–Abell
  • 53P/Van Biesbroeck
  • 54P/de Vico–Swift–NEAT
  • 55P/Tempel–Tuttle
  • 56P/Slaughter–Burnham
  • 57P/du Toit–Neujmin–Delporte
  • 58P/Jackson–Neujmin
  • 59P/Kearns–Kwee
  • 60P/Tsuchinshan
  • 61P/Shajn–Schaldach
  • 62P/Tsuchinshan
  • 63P/Wild
  • 64P/Swift–Gehrels
  • 65P/Gunn
  • 66P/du Toit
  • 67P/Churyumov–Gerasimenko
  • 68P/Klemola
  • 69P/Taylor
  • 70P/Kojima
  • 71P/Clark
  • 72P/Denning–Fujikawa
  • 73P/Schwassmann–Wachmann
  • 74P/Smirnova–Chernykh
  • 75D/Kohoutek
  • 76P/West–Kohoutek–Ikemura
  • 77P/Longmore
  • 78P/Gehrels
  • 79P/du Toit–Hartley
  • 80P/Peters–Hartley
  • 81P/Wild
  • 82P/Gehrels
  • 83D/Russell
  • 84P/Giclas
  • 85D/Boethin
After 1985(notable)
  • 88P/Howell
  • 92P/Sanguin
  • 96P/Machholz
  • 97P/Metcalf–Brewington
  • 103P/Hartley
  • 107P/Wilson–Harrington
  • 108P/Ciffréo
  • 109P/Swift–Tuttle
  • 122P/de Vico
  • 126P/IRAS
  • 141P/Machholz
  • 144P/Kushida
  • 147P/Kushida–Muramatsu
  • 153P/Ikeya–Zhang
  • 156P/Russell–LINEAR
  • 161P/Hartley–IRAS
  • 162P/Siding Spring
  • 168P/Hergenrother
  • 169P/NEAT
  • 177P/Barnard
  • 178P/Hug–Bell
  • 205P/Giacobini
  • 209P/LINEAR
  • 238P/Read
  • 246P/NEAT
  • 249P/LINEAR
  • 252P/LINEAR
  • 255P/Levy
  • 273P/Pons–Gambart
  • 289P/Blanpain
  • 311P/PanSTARRS
  • 322P/SOHO
  • 323P/SOHO
  • 332P/Ikeya–Murakami
  • 333P/LINEAR
  • 354P/LINEAR
  • 362P
  • 460P/PanSTARRS
Comet-likeasteroids
  • 596 Scheila
  • 2060 Chiron (95P)
  • 4015 Wilson–Harrington (107P)
  • 7968 Elst–Pizarro (133P)
  • 165P/LINEAR
  • 166P/NEAT
  • 167P/CINEOS
  • 60558 Echeclus (174P)
  • 118401 LINEAR (176P)
  • 238P/Read
  • 259P/Garradd
  • 311P/PanSTARRS
  • 324P/La Sagra
  • 331P/Gibbs
  • 354P/LINEAR
  • 358P/PANSTARRS
  • P/2013 R3 (Catalina-PANSTARRS)
  • (300163) 2006 VW139
Lost
Recovered
  • 9P/Tempel
  • 11P/Tempel–Swift–LINEAR
  • 15P/Finlay
  • 17P/Holmes
  • 27P/Crommelin
  • 54P/de Vico–Swift–NEAT
  • 55P/Tempel–Tuttle
  • 57P/du Toit–Neujmin–Delporte
  • 69P/Taylor
  • 72P/Denning–Fujikawa
  • 80P/Peters–Hartley
  • 97P/Metcalf–Brewington
  • 107P/Wilson–Harrington
  • 113P/Spitaler
  • 122P/de Vico
  • 157P/Tritton
  • 205P/Giacobini
  • 206P/Barnard–Boattini
  • 226P/Pigott–LINEAR–Kowalski
  • 271P/van Houten–Lemmon
  • 289P/Blanpain
  • 489P/Denning
Destroyed
  • 3D/Biela
  • D/1993 F2 (Shoemaker–Levy 9)
Not found
  • D/1770 L1 (Lexell)
  • 5D/Brorsen
  • 18D/Perrine–Mrkos
  • 20D/Westphal
  • 25D/Neujmin
  • 34D/Gale
  • 75D/Kohoutek
  • 83D/Russell
  • 85D/Boethin
  • D/1978 R1 (Haneda–Campos)
Visited byspacecraft
  • 21P/Giacobini–Zinner (1985)
  • 1P/Halley (1986)
  • 26P/Grigg–Skjellerup (1992)
  • 19P/Borrelly (2001)
  • 81P/Wild (2004)
  • 9P/Tempel (2005, 2011)
  • C/2006 P1 (2007)
  • 103P/Hartley (2010)
  • 67P/Churyumov–Gerasimenko (2014)
Near-Paraboliccomets(notable)
Until 1990
  • C/-43 K1 (Caesar's Comet)
  • X/1106 C1 (Great Comet of 1106)
  • C/1264 N1 (Great Comet of 1264)
  • C/1402 D1 (Great Comet of 1402)
  • C/1471 Y1 (Great Comet of 1472)
  • C/1577 V1 (Great Comet of 1577)
  • C/1652 Y1
  • C/1680 V1 (Great Comet of 1680, Kirsch's Comet, Newton's Comet))
  • C/1702 H1 (Comet of 1702)
  • C/1729 P1 (Comet of 1729, Comet Sarabat)
  • C/1739 K1 (Zanotti)
  • C/1743 X1 (Great Comet of 1744, Comet Klinkenberg-Chéseaux)
  • C/1760 A1 (Great Comet of 1760)
  • C/1769 P1 (Great Comet of 1769)
  • C/1807 R1 (Great Comet of 1807)
  • C/1811 F1 (Great Comet of 1811)
  • C/1819 N1 (Great Comet of 1819)
  • C/1823 Y1 (Great Comet of 1823)
  • C/1843 D1 (Great March Comet of 1843)
  • C/1846 J1 (Brorsen)
  • C/1847 T1 (Miss Mitchell's Comet)
  • C/1852 K1 (Chacornac)
  • C/1853 G1 (Schweizer)
  • C/1858 L1 (Comet Donati)
  • C/1861 G1 (Comet Thatcher)
  • C/1861 J1 (Great Comet of 1861)
  • C/1862 N1 (Schmidt)
  • C/1864 N1 (Tempel)
  • C/1865 B1 (Great Southern Comet of 1865)
  • X/1872 X1 (Pogson's Comet)
  • C/1874 H1 (Comet Coggia)
  • C/1881 K1 (Comet Tebbutt)
  • C/1882 R1 (Great Comet of 1882)
  • C/1887 B1 (Great Southern Comet of 1887)
  • C/1893 U1 (Brooks)
  • C/1901 G1 (Great Comet of 1901)
  • C/1907 G1 (Grigg–Mellish)
  • C/1910 A1 (Great January Comet of 1910)
  • C/1911 N1 (Kiess)
  • C/1911 O1 (Brooks)
  • C/1911 S3 (Beljawsky)
  • C/1915 C1 (Mellish)
  • C/1917 F1 (Mellish)
  • C/1927 X1 (Skjellerup–Maristany)
  • C/1931 P1 (Ryves)
  • C/1936 O1 (Kaho–Kozik–Lis)
  • C/1939 H1 (Jurlof–Achmarof–Hassel)
  • C/1941 B2 (de Kock-Paraskevopoulos)
  • C/1947 X1 (Southern Comet)
  • C/1948 L1 (Honda–Bernasconi)
  • C/1948 V1 (Eclipse)
  • C/1956 R1 (Arend–Roland)
  • C/1957 P1 (Mrkos)
  • C/1961 O1 (Wilson-Hubbard)
  • C/1961 R1 (Humason)
  • C/1961 T1 (Seki)
  • C/1962 C1 (Seki-Lines)
  • C/1963 A1 (Ikeya)
  • C/1963 R1 (Pereyra)
  • C/1964 N1 (Ikeya)
  • C/1965 S1 (Ikeya-Seki)
  • C/1969 T1 (Tago-Sato-Kosaka)
  • C/1969 Y1 (Bennett)
  • C/1970 K1 (White–Ortiz–Bolelli)
  • C/1973 E1 (Kohoutek)
  • C/1975 T2 (Suzuki–Saigusa–Mori)
  • C/1975 V1 (West)
  • C/1979 Y1 (Bradfield)
  • C/1980 E1 (Bowell)
  • C/1983 H1 (IRAS–Araki–Alcock)
  • C/1983 J1 (Sugano–Saigusa–Fujikawa)
  • C/1989 W1 (Aarseth-Brewington)
  • C/1989 X1 (Austin)
  • C/1989 Y1 (Skorichenko–George)
After 1990
  • C/1990 K1 (Levy)
  • C/1992 J1 (Spacewatch–Rabinowitz)
  • C/1993 Y1 (McNaught–Russell)
  • C/1995 O1 (Hale–Bopp)
  • C/1996 B2 (Hyakutake)
  • C/1997 L1 (Zhu–Balam)
  • C/1998 H1 (Stonehouse)
  • C/1998 J1 (SOHO)
  • C/1999 F1 (Catalina)
  • C/1999 H1 (Lee)
  • C/1999 S4 (LINEAR)
  • C/2000 WM1 (LINEAR)
  • C/2001 A2 (LINEAR)
  • C/2001 OG108 (LONEOS)
  • C/2001 Q4 (NEAT)
  • C/2002 T7 (LINEAR)
  • C/2002 V1 (NEAT)
  • C/2004 F4 (Bradfield)
  • C/2004 Q2 (Machholz)
  • C/2006 A1 (Pojmański)
  • C/2006 M4 (SWAN)
  • C/2006 P1 (McNaught)
  • C/2007 E2 (Lovejoy)
  • C/2007 F1 (LONEOS)
  • C/2007 N3 (Lulin)
  • C/2007 Q3 (Siding Spring)
  • C/2007 W1 (Boattini)
  • C/2009 F6 (Yi–SWAN)
  • C/2009 R1 (McNaught)
  • C/2010 X1 (Elenin)
  • C/2011 L4 (PANSTARRS)
  • C/2011 W3 (Lovejoy)
  • C/2012 E2 (SWAN)
  • C/2012 F6 (Lemmon)
  • C/2012 K1 (PANSTARRS)
  • C/2012 S1 (ISON)
  • C/2013 A1 (Siding Spring)
  • C/2013 R1 (Lovejoy)
  • C/2013 US10 (Catalina)
  • C/2013 V5 (Oukaimeden)
  • C/2014 E2 (Jacques)
  • C/2014 Q1 (PanSTARRS)
  • C/2014 Q2 (Lovejoy)
  • C/2014 UN271 (Bernardinelli–Bernstein)
  • C/2015 ER61 (PanSTARRS)
  • C/2015 V2 (Johnson)
  • C/2017 K2 (PanSTARRS)
  • 1I/2017 U1 ʻOumuamua
  • C/2018 Y1 (Iwamoto)
  • 2I/Borisov
  • C/2019 U6 (Lemmon)
  • C/2019 Y4 (ATLAS)
  • C/2020 F3 (NEOWISE)
  • C/2020 F8 (SWAN)
  • C/2021 A1 (Leonard)
  • C/2022 E3 (ZTF)
  • C/2023 A3 (Tsuchinshan–ATLAS)
  • C/2023 P1 (Nishimura)
  • C/2024 G3 (ATLAS)
  • C/2024 S1 (ATLAS)
  • C/2025 A6 (Lemmon)
  • C/2025 D1 (Gröller)
After 1910(by name)
  • Aarseth–Brewington
  • Arend–Roland
  • ATLAS
    • C/2019 Y4
    • C/2024 G3
    • C/2024 S1
    • 3I
  • Austin
  • Beljawsky
  • Bennett
  • Bernardinelli–Bernstein
  • Boattini
  • Borisov
  • Bowell
  • Bradfield
    • C/1979 Y1
    • C/2004 F4
  • Brooks
  • Catalina
    • C/1999 F1
    • C/2013 US10
  • de Kock–Paraskevopoulos
  • Eclipse
  • Elenin
  • Gröller
  • Hale-Bopp
  • Honda–Bernasconi
  • Humason
  • Hyakutake
  • Ikeya
    • C/1963 A1
    • C/1964 N1
  • Ikeya-Seki
  • IRAS–Araki–Alcock
  • ISON
  • Iwamoto
  • Jacques
  • Johnson
  • Jurlof–Achmarof–Hassel
  • Kaho–Kozik–Lis
  • Kiess
  • Kohoutek
  • Lee
  • Lemmon
    • C/2012 F6
    • C/2019 U6
    • C/2025 A6
  • Leonard
  • Levy
  • LINEAR
    • C/1999 S4
    • C/2000 WM1
    • C/2001 A2
    • C/2002 T7
  • LONEOS
    • C/2001 OG108
    • C/2007 F1
  • Lovejoy
    • C/2007 E2
    • C/2011 W3
    • C/2013 R1
    • C/2014 Q2
  • Lulin
  • Machholz
  • McNaught
    • C/2006 P1
    • C/2009 R1
  • McNaught–Russell
  • Mellish
    • C/1915 C1
    • C/1917 F1
  • Mrkos
  • NEAT
    • C/2001 Q4
    • C/2002 V1
  • NEOWISE
  • Nishimura
  • Oukaimeden
  • ʻOumuamua
  • Pan-STARRS
    • C/2011 L4
    • C/2012 K1
    • 311P/PanSTARRS
    • C/2014 Q1
    • C/2015 ER61
    • C/2017 K2
  • Pereyra
  • Pojmański
  • Ryves
  • Seki
  • Seki–Lines
  • Siding Spring
    • C/2007 Q3
    • C/2013 A1
  • Skjellerup–Maristany
  • Skorichenko–George
  • SOHO
  • Solwind
  • Southern
  • Spacewatch
  • Stonehouse
  • Sugano–Saigusa–Fujikawa
  • Suzuki–Saigusa–Mori
  • SWAN
    • C/2006 M4
    • C/2020 F8
  • Tago–Sato–Kosaka
  • Tsuchinshan–ATLAS
  • West
  • White–Ortiz–Bolelli
  • Wilson–Hubbard
  • Yi–SWAN
  • Zhu–Balam
  • ZTF
  • Category
  • v
  • t
  • e
Small Solar System bodies
Minor planets
  • Designation
  • Groups
  • List
  • Moon
  • Meanings of names
Asteroid
  • Active
  • Aten asteroid
  • Asteroid belt
  • Family
  • Jupiter trojan
  • Near-Earth
  • Spectral types
Distant minor planet
    • Centaur
    • Neptune trojan
  • Damocloid
  • Trans-Neptunian object
    • Detached
    • Kuiper belt
    • Oort cloud
    • Scattered disc
Comets
  • Extinct
  • Great
  • Halley-type
  • Hyperbolic
  • Long-period
  • Lost
  • Near-parabolic
  • Periodic
  • Sungrazing
Other
  • Cosmic dust
  • Meteoroids
  • Space debris

Tag » Why Do Comets Have Tails