ESP8266 With BME280 Using Arduino IDE (Pressure, Temperature ...

This guide shows how to use the BME280 sensor module with the ESP8266 to read pressure, temperature, humidity and estimate altitude using Arduino IDE. The BME280 sensor uses I2C or SPI communication protocol to exchange data with a microcontroller.

ESP8266 with BME280 using Arduino IDE (Pressure, Temperature, Humidity)

We’ll show you how to wire the sensor to the ESP8266, install the required libraries, and write a simple sketch that displays the sensor readings. We’ll also build a web server example to display the latest pressure, temperature and humidity readings.

Before proceeding with this tutorial you should have the ESP8266 add-on installed in your Arduino IDE.

  • Install the ESP8266 Board in Arduino IDE

You might also like reading other BME280 guides:

  • ESP32 with BME280 Sensor using Arduino IDE
  • ESP32 Web Server with BME280 – Weather Station
  • ESP32/ESP8266 with BME280 using MicroPython
  • Arduino Board with BME280

Introducing BME280 Sensor Module

The BME280 sensor module reads barometric pressure, temperature, and humidity. Because pressure changes with altitude, you can also estimate altitude. There are several versions of this sensor module. We’re using the module illustrated in the figure below.

BME280 Sensor I2C Module reads pressure, temperature, and humidity

This sensor communicates using I2C communication protocol, so the wiring is very simple. You can use the default ESP8266 I2C pins as shown in the following table:

BME280ESP8266
Vin3.3V
GNDGND
SCLGPIO 5
SDAGPIO 4

There are other versions of this sensor that can use either SPI or I2C communication protocols, like the module shown in the next figure:

BME280 Sensor Module SPI or I2C communication protocols

If you’re using one of these sensors, to use I2C communication protocol, use the following pins:

BME280ESP8266
SCK (SCL Pin) GPIO 5
SDI (SDA pin) GPIO 4

If you use SPI communication protocol, you need to use the following pins:

BME280ESP8266
SCK (SPI Clock)GPIO 14
SDO (MISO)GPIO 12
SDI (MOSI)GPIO 13
CS (Chip Select) GPIO 15

Parts Required

To complete this tutorial you need the following parts:

  • BME280 sensor module
  • ESP8266 (read Best ESP8266 development boards)
  • Breadboard
  • Jumper wires

You can use the preceding links or go directly to MakerAdvisor.com/tools to find all the parts for your projects at the best price!

Schematic – ESP8266 with BME280 using I2C

We’re going to use I2C communication with the BME280 sensor module. For that, wire the sensor to the ESP8266 SDA and SCL pins, as shown in the following schematic diagram.

Schematic Wiring diagram ESP8266 with BME280 using I2C

Recommended reading: ESP8266 Pinout Reference Guide

Installing the BME280 library

To get readings from the BME280 sensor module you need to use the Adafruit_BME280 library. Follow the next steps to install the library in your Arduino IDE:

Open your Arduino IDE and go to Sketch > Include Library > Manage Libraries. The Library Manager should open.

Search for “adafruit bme280 ” on the Search box and install the library.

Installing BME280 library in Arduino IDE

Installing the Adafruit_Sensor library

To use the BME280 library, you also need to install the Adafruit_Sensor library. Follow the next steps to install the library in your Arduino IDE:

Go to Sketch > Include Library > Manage Libraries and type “Adafruit Unified Sensor” in the search box. Scroll all the way down to find the library and install it.

Installing Adafruit Unified Sensor Driver library

After installing the libraries, restart your Arduino IDE.

Reading Pressure, Temperature, and Humidity

To read pressure, temperature, and humidity we’ll use a sketch example from the library.

ESP8266 with BME280 I2C sensor module on Breadboard

After installing the BME280 library, and the Adafruit_Sensor library, open the Arduino IDE and, go to File > Examples > Adafruit BME280 library > bme280 test.

/********* Complete project details at https://randomnerdtutorials.com *********/ #include <Wire.h> #include <Adafruit_Sensor.h> #include <Adafruit_BME280.h> /*#include <SPI.h> #define BME_SCK 14 #define BME_MISO 12 #define BME_MOSI 13 #define BME_CS 15*/ #define SEALEVELPRESSURE_HPA (1013.25) Adafruit_BME280 bme; // I2C //Adafruit_BME280 bme(BME_CS); // hardware SPI //Adafruit_BME280 bme(BME_CS, BME_MOSI, BME_MISO, BME_SCK); // software SPI unsigned long delayTime; void setup() { Serial.begin(9600); Serial.println(F("BME280 test")); bool status; // default settings // (you can also pass in a Wire library object like &Wire2) status = bme.begin(0x76); if (!status) { Serial.println("Could not find a valid BME280 sensor, check wiring!"); while (1); } Serial.println("-- Default Test --"); delayTime = 1000; Serial.println(); } void loop() { printValues(); delay(delayTime); } void printValues() { Serial.print("Temperature = "); Serial.print(bme.readTemperature()); Serial.println(" *C"); // Convert temperature to Fahrenheit /*Serial.print("Temperature = "); Serial.print(1.8 * bme.readTemperature() + 32); Serial.println(" *F");*/ Serial.print("Pressure = "); Serial.print(bme.readPressure() / 100.0F); Serial.println(" hPa"); Serial.print("Approx. Altitude = "); Serial.print(bme.readAltitude(SEALEVELPRESSURE_HPA)); Serial.println(" m"); Serial.print("Humidity = "); Serial.print(bme.readHumidity()); Serial.println(" %"); Serial.println(); }

View raw code

We’ve made a few modifications to the sketch to make it fully compatible with the ESP8266.

How the Code Works

Continue reading this section to learn how the code works, or skip to the “Demonstration” section.

Libraries

The code starts by including the needed libraries: the wire library to use I2C, and the Adafruit_Sensor and Adafruit_BME280 libraries to interface with the BME280 sensor.

#include <Wire.h> #include <Adafruit_Sensor.h> #include <Adafruit_BME280.h>

SPI communication

As we’re going to use I2C communication, the following lines that define the SPI pins are commented:

/*#include <SPI.h> #define BME_SCK 14 #define BME_MISO 12 #define BME_MOSI 13 #define BME_CS 15*/

Note: if you’re using SPI communication, use the ESP8266 default SPI pins:

MOSIMISOCLKCS
GPIO 13GPIO 12GPIO 14GPIO 15

Sea level pressure

A variable called SEALEVELPRESSURE_HPA is created.

#define SEALEVELPRESSURE_HPA (1013.25)

This variable saves the pressure at the sea level in hectopascal (is equivalent to milibar). This variable is used to estimate the altitude for a given pressure by comparing it with the sea level pressure. This example uses the default value, but for more accurate results, replace the value with the current sea level pressure at your location.

I2C

This example uses I2C communication protocol by default. As you can see, you just need to create an Adafruit_BME280 object called bme.

Adafruit_BME280 bme; // I2C

To use SPI, you need to comment this previous line and uncomment one of the following lines.

//Adafruit_BME280 bme(BME_CS); // hardware SPI //Adafruit_BME280 bme(BME_CS, BME_MOSI, BME_MISO, BME_SCK); // software SPI

setup()

In the setup(), start a serial communication:

Serial.begin(9600);

And initialize the sensor:

status = bme.begin(0x76); if (!status) { Serial.println("Could not find a valid BME280 sensor, check wiring!"); while (1); }

We initialize the sensor with the 0x76 address. In case you’re not getting sensor readings, check the I2C address of your sensor. With the BME280 sensor wired to your ESP8266, run this I2C scanner sketch to check the address of your sensor. Then, change the address if needed.

Printing values

In the loop(), the printValues() function reads the values from the BME280 and prints the results in the Serial Monitor.

void loop() { printValues(); delay(delayTime); }

Reading temperature, humidity, pressure, and estimate altitude is as simple as using the following methods on the bme object:

  • bme.readTemperature() – reads temperature in Celsius;
  • bme.readHumidity() – reads absolute humidity;
  • bme.readPressure() – reads pressure in hPa (hectoPascal = millibar);
  • bme.readAltitude(SEALEVELPRESSURE_HPA) – estimates altitude in meters based on the pressure at the sea level.

Demonstration

Upload the code to your ESP8266, and open the Serial Monitor at a baud rate of 9600. Press the on-board RST button to run the code. You should see the readings displayed on the Serial Monitor.

Printing BME280 pressure, temperature and humidity readings with ESP32 in Arduino IDE Serial Monitor

ESP8266 Web Server with BME280 Sensor

The BME280 sensor measures temperature, humidity, and pressure. So, you can easily build a compact weather station and monitor the measurements using a web server built with the ESP8266 – that’s what we’re going to do in this section

ESP8266 Web Server with BME280 Sensor in Arduino IDE

Copy the following code to your Arduino IDE. Don’t upload it yet. First, you need to include your SSID and password.

/********* Rui Santos Complete project details at https://randomnerdtutorials.com *********/ // Load Wi-Fi library #include <ESP8266WiFi.h> #include <Wire.h> #include <Adafruit_BME280.h> #include <Adafruit_Sensor.h> //uncomment the following lines if you're using SPI /*#include <SPI.h> #define BME_SCK 14 #define BME_MISO 12 #define BME_MOSI 13 #define BME_CS 15*/ #define SEALEVELPRESSURE_HPA (1013.25) Adafruit_BME280 bme; // I2C //Adafruit_BME280 bme(BME_CS); // hardware SPI //Adafruit_BME280 bme(BME_CS, BME_MOSI, BME_MISO, BME_SCK); // software SPI // Replace with your network credentials const char* ssid = "REPLACE_WITH_YOUR_SSID"; const char* password = "REPLACE_WITH_YOUR_PASSWORD"; // Set web server port number to 80 WiFiServer server(80); // Variable to store the HTTP request String header; void setup() { Serial.begin(115200); bool status; // default settings // (you can also pass in a Wire library object like &Wire2) //status = bme.begin(); if (!bme.begin(0x76)) { Serial.println("Could not find a valid BME280 sensor, check wiring!"); while (1); } // Connect to Wi-Fi network with SSID and password Serial.print("Connecting to "); Serial.println(ssid); WiFi.begin(ssid, password); while (WiFi.status() != WL_CONNECTED) { delay(500); Serial.print("."); } // Print local IP address and start web server Serial.println(""); Serial.println("WiFi connected."); Serial.println("IP address: "); Serial.println(WiFi.localIP()); server.begin(); } void loop(){ WiFiClient client = server.available(); // Listen for incoming clients if (client) { // If a new client connects, Serial.println("New Client."); // print a message out in the serial port String currentLine = ""; // make a String to hold incoming data from the client while (client.connected()) { // loop while the client's connected if (client.available()) { // if there's bytes to read from the client, char c = client.read(); // read a byte, then Serial.write(c); // print it out the serial monitor header += c; if (c == '\n') { // if the byte is a newline character // if the current line is blank, you got two newline characters in a row. // that's the end of the client HTTP request, so send a response: if (currentLine.length() == 0) { // HTTP headers always start with a response code (e.g. HTTP/1.1 200 OK) // and a content-type so the client knows what's coming, then a blank line: client.println("HTTP/1.1 200 OK"); client.println("Content-type:text/html"); client.println("Connection: close"); client.println(); // Display the HTML web page client.println("<!DOCTYPE html><html>"); client.println("<head><meta name=\"viewport\" content=\"width=device-width, initial-scale=1\">"); client.println("<link rel=\"icon\" href=\"data:,\">"); // CSS to style the table client.println("<style>body { text-align: center; font-family: \"Trebuchet MS\", Arial;}"); client.println("table { border-collapse: collapse; width:35%; margin-left:auto; margin-right:auto; }"); client.println("th { padding: 12px; background-color: #0043af; color: white; }"); client.println("tr { border: 1px solid #ddd; padding: 12px; }"); client.println("tr:hover { background-color: #bcbcbc; }"); client.println("td { border: none; padding: 12px; }"); client.println(".sensor { color:white; font-weight: bold; background-color: #bcbcbc; padding: 1px; }"); // Web Page Heading client.println("</style></head><body><h1>ESP8266 with BME280</h1>"); client.println("<table><tr><th>MEASUREMENT</th><th>VALUE</th></tr>"); client.println("<tr><td>Temp. Celsius</td><td><span class=\"sensor\">"); client.println(bme.readTemperature()); client.println(" *C</span></td></tr>"); client.println("<tr><td>Temp. Fahrenheit</td><td><span class=\"sensor\">"); client.println(1.8 * bme.readTemperature() + 32); client.println(" *F</span></td></tr>"); client.println("<tr><td>Pressure</td><td><span class=\"sensor\">"); client.println(bme.readPressure() / 100.0F); client.println(" hPa</span></td></tr>"); client.println("<tr><td>Approx. Altitude</td><td><span class=\"sensor\">"); client.println(bme.readAltitude(SEALEVELPRESSURE_HPA)); client.println(" m</span></td></tr>"); client.println("<tr><td>Humidity</td><td><span class=\"sensor\">"); client.println(bme.readHumidity()); client.println(" %</span></td></tr>"); client.println("</body></html>"); // The HTTP response ends with another blank line client.println(); // Break out of the while loop break; } else { // if you got a newline, then clear currentLine currentLine = ""; } } else if (c != '\r') { // if you got anything else but a carriage return character, currentLine += c; // add it to the end of the currentLine } } } // Clear the header variable header = ""; // Close the connection client.stop(); Serial.println("Client disconnected."); Serial.println(""); } }

View raw code

How the Code Works

Continue reading this section to learn how the code works or skip to the “Demonstration” section.

This sketch is very similar with the sketch used in the ESP8266 Web Server Tutorial. First, you include the ESP8266WiFi library and the needed libraries to read from the BME280 sensor.

// Load Wi-Fi library #include <ESP8266WiFi.h> #include <Wire.h> #include <Adafruit_BME280.h> #include <Adafruit_Sensor.h>

The next line defines a variable to save the pressure at the sea level. For more accurate altitude estimation, replace the value with the current sea level pressure at your location.

#define SEALEVELPRESSURE_HPA (1013.25)

In the following line you create an Adafruit_BME280 object called bme that by default establishes a communication with the sensor using I2C.

Adafruit_BME280 bme; // I2C

As mentioned previously, you need to insert your ssid and password in the following lines inside the double quotes.

const char* ssid = ""; const char* password = "";

Then, you set your web server to port 80.

// Set web server port number to 80 WiFiServer server(80);

The following line creates a variable to store the header of the HTTP request:

String header;

setup()

In the setup(), we start a serial communication at a baud rate of 115200 for debugging purposes.

Serial.begin(115200);

You check that the BME280 sensor was successfully initialized.

if (!bme.begin(0x76)) { Serial.println("Could not find a valid BME280 sensor, check wiring!"); while (1);

The following lines begin the Wi-Fi connection with WiFi.begin(ssid, password), wait for a successful connection and print the ESP IP address in the Serial Monitor.

// Connect to Wi-Fi network with SSID and password Serial.print("Connecting to "); Serial.println(ssid); WiFi.begin(ssid, password); while (WiFi.status() != WL_CONNECTED) { delay(500); Serial.print("."); } // Print local IP address and start web server Serial.println(""); Serial.println("WiFi connected."); Serial.println("IP address: "); Serial.println(WiFi.localIP()); server.begin();

loop()

In the loop(), we program what happens when a new client establishes a connection with the web server. The ESP is always listening for incoming clients with this line:

WiFiClient client = server.available(); // Listen for incoming clients

When a request is received from a client, we’ll save the incoming data. The while loop that follows will be running as long as the client stays connected.

if (client) { // If a new client connects, Serial.println("New Client."); // print a message out in the serial port String currentLine = ""; // make a String to hold incoming data from the client while (client.connected()) { // loop while the client's connected if (client.available()) { // if there's bytes to read from the client, char c = client.read(); // read a byte, then Serial.write(c); // print it out the serial monitor header += c; if (c == '\n') { // if the byte is a newline character // if the current line is blank, you got two newline characters in a row. // that's the end of the client HTTP request, so send a response: if (currentLine.length() == 0) { // HTTP headers always start with a response code (e.g. HTTP/1.1 200 OK) // and a content-type so the client knows what's coming, then a blank line: client.println("HTTP/1.1 200 OK"); client.println("Content-type:text/html"); client.println("Connection: close"); client.println();

Displaying the HTML web page

The next thing you need to do is sending a response to the client with the HTML text to build the web page.

The web page is sent to the client using this expression client.println(). You should enter what you want to send to the client as an argument.

The following code snippet sends the web page to display the sensor readings in a table.

client.println("<!DOCTYPE html><html>"); client.println("<head><meta name=\"viewport\" content=\"width=device-width, initial-scale=1\">"); client.println("<link rel=\"icon\" href=\"data:,\">"); // CSS to style the on/off buttons // Feel free to change the background-color and font-size attributes to fit your preferences client.println("<style>body { text-align: center; font-family: \"Trebuchet MS\", Arial;}"); client.println("table { border-collapse: collapse; width:35%; margin-left:auto; margin-right:auto; }"); client.println("th { padding: 12px; background-color: #0043af; color: white; }"); client.println("tr { border: 1px solid #ddd; padding: 12px; }"); client.println("tr:hover { background-color: #bcbcbc; }"); client.println("td { border: none; padding: 12px; }"); client.println(".sensor { color:white; font-weight: bold; background-color: #bcbcbc; padding: 1px; }"); // Web Page Heading client.println("</style></head><body><h1>ESP32 with BME280</h1>"); client.println("<table><tr><th>MEASUREMENT</th><th>VALUE</th></tr>"); client.println("<tr><td>Temp. Celsius</td><td><span class=\"sensor\">"); client.println(bme.readTemperature()); client.println(" *C</span></td></tr>"); client.println("<tr><td>Temp. Fahrenheit</td><td><span class=\"sensor\">"); client.println(1.8 * bme.readTemperature() + 32); client.println(" *F</span></td></tr>"); client.println("<tr><td>Pressure</td><td><span class=\"sensor\">"); client.println(bme.readPressure() / 100.0F); client.println(" hPa</span></td></tr>"); client.println("<tr><td>Approx. Altitude</td><td><span class=\"sensor\">"); client.println(bme.readAltitude(SEALEVELPRESSURE_HPA)); client.println(" m</span></td></tr>"); client.println("<tr><td>Humidity</td><td><span class=\"sensor\">"); client.println(bme.readHumidity()); client.println(" %</span></td></tr>"); client.println("</body></html>");

Note: you can click here to view the full HTML web page.

Displaying the Sensor Readings

To display the sensor readings on the table, we just need to send them between the corresponding <td> and </td> tags. For example, to display the temperature:

client.println("<tr><td>Temp. Celsius</td><td><span class=\"sensor\">"); client.println(bme.readTemperature()); client.println(" *C</span></td></tr>");

Note: the <span> tag is useful to style a particular part of a text. In this case, we’re using the <span> tag to include the sensor reading in a class called “sensor”. This is useful to style that particular part of text using CSS.

By default the table is displaying the temperature readings in both Celsius degrees and Fahrenheit. You can comment the following three lines, if you want to display the temperature only in Fahrenheit degrees.

/*client.println("<tr><td>Temp. Celsius</td><td><span class=\"sensor\">"); client.println(bme.readTemperature()); client.println(" *C</span></td></tr>");*/

Closing the Connection

Finally, when the response ends, we clear the header variable, and stop the connection with the client with client.stop().

// Clear the header variable header = ""; // Close the connection client.stop();

Web Server Demonstration

After inserting your network credentials you can upload the code to your board.

Check that you have the right board and COM port selected, and upload the code to your ESP8266. After uploading, open the Serial Monitor at a baud rate of 115200, and copy the ESP8266 IP address.

ESP8266 IP address Serial Monitor

Open your browser, paste the IP address, and you should see the latest sensor readings.

BME280 Web Server with ESP8266 demonstration

To update the readings, you just need to refresh the web page.

You may also like: ESP8266 with DHT11 Sensor – Asynchronous Web Server with Auto Updates

Wrapping Up

This article was an in-depth guide on how to get pressure, temperature and humidity readings from a BME280 sensor with the ESP8266 using Arduino IDE and display the readings on a web server.

Now, you can take this project further and display your sensor readings in an OLED display; create a datalogger; save the readings in your own database or send the readings to your Home Automation platform using MQTT. Here’s some projects and tutorials that might help you implement these ideas:

  • ESP32 Publish Sensor Readings to Google Sheets
  • Low Power Weather Station Datalogger (MicroPython)
  • ESP32/ESP8266 Insert Data into MySQL Database using PHP and Arduino IDE
  • ESP8266 and Node-RED with MQTT (Publish and Subscribe)
  • What is MQTT and How It Works

Learn more about the ESP8266 with our course: Home Automation using ESP8266

Thanks for reading.

Tag » Arduino Adafruit_bme280.h