Formula For The Length Of A Vector - One Mathematical Cat
Maybe your like
Index card: 84b
You may want to review prior sections:
- Introduction to Vectors
- Working With the Arrow Representation for Vectors
- Working With the Analytic Representation for Vectors
- Unit Vectors
Let $\,\overrightarrow{v} = \langle a,b\rangle\,$ be a vector.
Depending upon the signs (plus or minus) of $\,a\,$ and $\,b\,,$ the vector $\,\overrightarrow{v}\,$ is one of the four vectors shown below. (To match the diagram, suppose that $\,a\,$ and $\,b\,$ are both nonzero.)
In all four cases, the length (size, magnitude) of $\,\overrightarrow{v}\,$ is the hypotenuse of a triangle with sides of length $\,|a|\,$ and $\,|b|\,.$
Recall that $\,\|\overrightarrow{v}\|\,$ denotes the length of $\,\overrightarrow{v}\,.$ We have:
$$ \begin{align} \cssId{s7}{\|\overrightarrow{v}\|^2} &= \cssId{s8}{|a|^2 + |b|^2}\cr &\qquad \cssId{s9}{\text{(by the Pythagorean Theorem)}}\cr\cr &= \cssId{s10}{a^2 + b^2} \cr &\qquad \cssId{s11}{\substack{\text{($x^2 = |x|^2\,,$ since they have}\\ \text{the same size and sign)}}}\cr \end{align} $$Take the square root of both sides, and use the fact that $\,\|\overrightarrow{v}\|\ge 0\,.$ The result is the formula for the length of $\,\overrightarrow{v} = \langle a,b\rangle\,$:
$$ \begin{gather} \|\overrightarrow{v}\| = \sqrt{a^2 + b^2}\cr \text{(Vector Length Formula)} \end{gather} $$
$\overrightarrow{v} = \langle a,b\rangle\,$ is one of these four vectors:
$$ \|\overrightarrow{v}\| = \sqrt{a^2 + b^2} $$Notes on the Vector Length Formula
In Words, to Find the Length of a Vector:
- Square the horizontal component
- Square the vertical component
- Add these squares together
- Take the square root of the sum
More compactly:
The length of a vector is the square root of the sum of the squares of the horizontal and vertical components.If the Horizontal or Vertical Component is Zero
If $\,a\,$ or $\,b\,$ is zero, then you don't need the vector length formula. In this case, the length is just the absolute value of the nonzero component. For example:
- $\|\,\langle 5,0\rangle\,\| = 5$
- $\|\,\langle 0,-3\rangle\,\| = |-3| = 3$
In general:
- $\|\,\langle a,0\rangle\,\| = |a|$
- $\|\,\langle 0,b\rangle\,\| = |b|$
However, the vector length formula certainly works—keep reading!
The Correct Formula for Taking the Square Root of a Square
For all real numbers $\,x\,,$ $\sqrt{x^2} = |x|\,.$ Without the absolute value symbol, it doesn't work for negative numbers! For example, $\,\sqrt{(-3)^2} \ne -3\,.$ Be careful!
Using the Vector Length Formula When a Component is Zero
Here's what happens with the vector length formula if one of the components is zero:
$$ \begin{gather} \cssId{s42}{\|\,\langle a,0\rangle\,\|} = \cssId{s43}{\sqrt{a^2 + 0^2}} = \cssId{s44}{\sqrt{a^2}} = \cssId{s45}{|a|}\cr\cr \cssId{s46}{\text{ and }} \cr\cr \cssId{s47}{\|\,\langle 0,b\rangle\,\|} = \cssId{s48}{\sqrt{0^2 + b^2}} = \cssId{s49}{\sqrt{b^2}} = \cssId{s50}{|b|} \end{gather} $$The formula works, but it's unnecessary in these simple cases.
Finding the Length of a Scaled Vector
Let $\,a\,,$ $\,b\,,$ and $\,k\,$ be real numbers. Let $\,\overrightarrow{v} = \langle a,b\rangle\,.$ Then,
$$ \begin{align} \cssId{s56}{\|k\overrightarrow{v}\|} &\ =\ \cssId{s57}{\|\,k\langle a,b\rangle\,\|}\cr &\qquad \cssId{s58}{\text{(definition of $\,\overrightarrow{v}\,$)}}\cr\cr &\ =\ \cssId{s59}{\|\,\langle ka,kb \rangle\,\|}\cr &\qquad \cssId{s60}{\text{(multiply a vector by a scalar)}}\cr\cr &\ =\ \cssId{s61}{\sqrt{(ka)^2 + (kb)^2}} \cr &\qquad \cssId{s62}{\text{(the vector length formula)}}\cr\cr &\ =\ \cssId{s63}{\sqrt{\strut k^2a^2 + k^2b^2}} \cr &\qquad \cssId{s64}{\text{(exponent law, squaring a product)}}\cr\cr &\ =\ \cssId{s65}{\sqrt{k^2(a^2 + b^2)} } \cr &\qquad \cssId{s66}{\text{(factor)}}\cr\cr &\ =\ \cssId{s67}{\sqrt{\strut k^2}\sqrt{\strut a^2 + b^2}} \cr &\qquad \cssId{s68}{\text{(property of radicals)}}\cr\cr &\ =\ \cssId{s69}{|k| \cdot \sqrt{\strut a^2 + b^2}} \cr &\qquad \cssId{s70}{\text{(since $\ \sqrt{x^2}=|x|\ $)}}\cr\cr &\ =\ \cssId{s71}{|k|\cdot \|\overrightarrow{v}\| }\cr &\qquad \cssId{s72}{\text{(the vector length formula)}} \end{align} $$So: $$\|k\overrightarrow{v}\| = |k|\cdot \|\overrightarrow{v}\|$$
Concept Practice
Tag » How To Find The Length Of A Vector
-
Length Of A Vector - Definition, Formulas, And Examples
-
Vectors - Finding Magnitude Or Length - YouTube
-
1.1 Length Of A Vector - YouTube
-
Vector Length. Vector Magnitude - OnlineMSchool
-
Vector Length (or Magnitude) | Math Examples - LAKschool
-
Formula For Vector Length
-
How Do I Find The Length Of A Vector? - Quora
-
Vectors In Two- And Three-dimensional Cartesian Coordinates
-
Vector Dot Product And Vector Length (video) - Khan Academy
-
Magnitude Of A Vector - Definition, Formula - Cuemath
-
R: Length Of A Vector Or List
-
Projections
-
Length Of Largest Array Dimension - MATLAB Length - MathWorks
-
How To Get Length Of Vector In R? - Tutorial Kart