Group 18: Reactions Of Nobel Gases - Chemistry LibreTexts
Maybe your like
- The Chemical Properties
- Example 1: Xenon Fluorides
- Example 2: Xenon Oxide
- Example 3: Radon Compounds
The noble gases (Group 18) are located in the far right of the periodic table and were previously referred to as the "inert gases" due to the fact that their filled valence shells (octets) make them extremely nonreactive.
The Chemical Properties
Noble gases are odorless, colorless, nonflammable, and monotonic gases that have low chemical reactivity.
| Atomic Number | Element | Number of Electrons/Shell |
|---|---|---|
| 2 | Helium | 2 |
| 10 | Neon | 2,8 |
| 18 | Argon | 2,8,8 |
| 36 | Krypton | 2,8,18,8 |
| 54 | Xenon | 2,8,18,18,8 |
| 86 | Radon | 2,8,18,32,18,8 |
The full valence electron shells of these atoms make noble gases extremely stable and unlikely to form chemical bonds because they have little tendency to gain or lose electrons. Although noble gases do not normally react with other elements to form compounds, there are some exceptions. Xe may form compounds with fluoride and oxide.
Example 1: Xenon Fluorides
Xenon Difluoride (\(XeF_2\))
- Dense white crystallized solid
- Powerful fluorinating agent
- Covalent inorganic fluorides
- Stable xenon compound
- Decomposes on contact with light or water vapor
- Linear geometry
- Moisture sensitive
- Low vapor pressure
Xenon Tetrafluoride (\(XeF_4\))
- Colorless Crystals
- Square planar geometry
- Discovered in 1963
Xenon Hexafluoride (\(XeF_6\))
- Strongest fluorinating agent
- Colorless solid
- Highest coordination of the three binary fluorides of xenon (\(XeF_2\) and \(XeF_4\))
- Formation is exergonic, and the compound is stable at normal temperatures
- Readily sublimes into intense yellow vapors
- Structure lacks perfect octahedral symmetry
Example 2: Xenon Oxide
Xenon Tetroxide (XeO4)

- Yellow crystalline solid
- Relatively stable
- Oxygen is the only element that can bring xenon up to its highest oxidation state of +8
Two other short-lived xenon compounds with an oxidation state of +8, XeO3F2 and XeO2F4, are produced in the reaction of xenon tetroxide with xenon hexafluoride.
Example 3: Radon Compounds
Radon difluoride (RnF2) is one of the few reported compounds of radon. Radon reacts readily with fluorine to form a solid compound, but this decomposes on attempted vaporization and its exact composition is uncertain. The usefulness of radon compounds is limited because of the noble gas's radioactivity. The longest-lived isotope, 222Ra, has a half-life of only 3.82 days.
Tag » Why Are Noble Gases Stable
-
Why Are Noble Gases Stable? - Socratic
-
Why Are Noble Gases Stable - Chemistry Stack Exchange
-
Why Are Noble Gases Are Stable? - Toppr
-
Why Are Noble Gases Stable? - YouTube
-
Why Is The Noble Gas Configuration Such A Stable Arrangement For ...
-
Why Are Noble Gases Incredibly Stable With Full Outermost Shell?
-
6.11: Noble Gases - Chemistry LibreTexts
-
Noble Gas - Wikipedia
-
Noble Gas - ScienceDaily
-
Noble Gases | CK-12 Foundation
-
Chemical Properties Of The Noble Gases - Group 0 - BBC
-
Noble Gas Compound - Wikipedia
-
To Get Noble Gases To Forge Bonds, Chemists Go To Extremes - C&EN
-
How Noble Gases Give Us Neon Lights - Cosmos Magazine