How Changes To The Data Change The Mean, Median, Mode, Range ...

Changing the entire data set

Shifting (addition and subtraction)

What happens to measures of central tendency and spread when we add a constant value to every value in the data set? To answer this question, let’s pretend we have the data set ???3,\ 3,\ 7,\ 9,\ 13???, and let’s calculate our measures for the set.

Mean: ???(3+3+7+9+13)/5=7???

Median: ???7???

Mode: ???3???

Range: ???13-3=10???

IQR: ???11-3=8???

If we add ???6??? to each data point in the set, the new set is ???9,\ 9,\ 13,\ 15,\ 19???. And our new measures of central tendency and spread are

Mean: ???(9+9+13+15+19)/5=13???

Median: ???13???

Mode: ???9???

Range: ???19-9=10???

IQR: ???17-9=8???

What we see is that adding ???6??? to the entire data set also adds ???6??? to the mean, median, and mode, but that the range and IQR stay the same.

And this will always be true. No matter what value we add to the set, the mean, median, and mode will shift by that amount but the range and the IQR will remain the same. The same will be true if we subtract an amount from every data point in the set: the mean, median, and mode will shift to the left but the range and IQR will stay the same.

So to summarize, whether we add a constant to each data point or subtract a constant from each data point, the mean, median, and mode will change by the same amount, but the range and IQR will stay the same.

Scaling (multiplication and division)

Let’s look at what happens when we multiply our data set by a constant value. Again starting with the set ???3,\ 3,\ 7,\ 9,\ 13???, the measures are

Mean: ???(3+3+7+9+13)/5=7???

Median: ???7???

Mode: ???3???

Range: ???13-3=10???

IQR: ???11-3=8???

Let’s multiply the set by ???2???, making the new set ???6,\ 6,\ 14,\ 18,\ 26???. The new measures of central tendency and spread are

Mean: ???(6+6+14+18+26)/5=14???

Median: ???14???

Mode: ???6???

Range: ???26-6=20???

IQR: ???22-6=16???

What we see is that multiplying the entire data set by ???2??? multiplies all five measures by ???2??? as well. The mean, median, mode, range, and IQR are all doubled when we double the values in the data set.

And this will always be true. No matter what value we multiply by the data set, the mean, median, mode, range, and IQR will all be multiplied by the same value. The same will be true if we divide every data point in the set by a constant value: the mean, median, mode, range, and IQR will all be divided by the same value.

So to summarize, if we multiply our data set by a constant value or divide our data set by a constant value, then the mean, median, mode, range, and IQR will all be scaled by the same amount.

Adding or removing a data point from the set

Mean

Thinking back to our discussion about the mean as a balancing point, we want to realize that adding another data point to the data set will naturally effect that balancing point. In fact, adding a data point to the set, or taking one away, can effect the mean, median, and mode.

If we add a data point that’s above the mean, or take away a data point that’s below the mean, then the mean will increase. If take away a data point that’s above the mean, or add a data point that’s below the mean, the mean will decrease.

Tag » When The Outliers Are Removed How Does The Mean Change