How Do I Create Plots In Pandas? — Pandas 1.5.0 Documentation

Skip to main content Back to top Ctrl+K
  • Getting started
  • User Guide
  • API reference
  • Development
  • Release notes
Choose version
  • GitHub
  • X
  • Mastodon
  • Installation
  • Package overview
  • Getting started tutorials
    • What kind of data does pandas handle?
    • How do I read and write tabular data?
    • How do I select a subset of a DataFrame?
    • How do I create plots in pandas?
    • How to create new columns derived from existing columns
    • How to calculate summary statistics
    • How to reshape the layout of tables
    • How to combine data from multiple tables
    • How to handle time series data with ease
    • How to manipulate textual data
  • Comparison with other tools
    • Comparison with R / R libraries
    • Comparison with SQL
    • Comparison with spreadsheets
    • Comparison with SAS
    • Comparison with Stata
    • Comparison with SPSS
  • Community tutorials
  • Getting started
  • Getting started tutorials
  • How do I create plots in pandas?
How do I create plots in pandas?# ../../_images/04_plot_overview.svg In [1]: importpandasaspd In [2]: importmatplotlib.pyplotasplt Data used for this tutorial:
  • Air quality data

    For this tutorial, air quality data about \(NO_2\) is used, made available by OpenAQ and using the py-openaq package. The air_quality_no2.csv data set provides \(NO_2\) values for the measurement stations FR04014, BETR801 and London Westminster in respectively Paris, Antwerp and London.

    To raw data In [3]: air_quality = pd.read_csv("data/air_quality_no2.csv", index_col=0, parse_dates=True) In [4]: air_quality.head() Out[4]: station_antwerp station_paris station_london datetime 2019-05-07 02:00:00 NaN NaN 23.0 2019-05-07 03:00:00 50.5 25.0 19.0 2019-05-07 04:00:00 45.0 27.7 19.0 2019-05-07 05:00:00 NaN 50.4 16.0 2019-05-07 06:00:00 NaN 61.9 NaN

    Note

    The index_col=0 and parse_dates=True parameters passed to the read_csv function define the first (0th) column as index of the resulting DataFrame and convert the dates in the column to Timestamp objects, respectively.

  • I want a quick visual check of the data.

    In [5]: air_quality.plot() Out[5]: <Axes: xlabel='datetime'> In [6]: plt.show() ../../_images/04_airqual_quick.png

    With a DataFrame, pandas creates by default one line plot for each of the columns with numeric data.

  • I want to plot only the columns of the data table with the data from Paris.

    In [7]: air_quality["station_paris"].plot() Out[7]: <Axes: xlabel='datetime'> In [8]: plt.show() ../../_images/04_airqual_paris.png

    To plot a specific column, use a selection method from the subset data tutorial in combination with the plot() method. Hence, the plot() method works on both Series and DataFrame.

  • I want to visually compare the \(NO_2\) values measured in London versus Paris.

    In [9]: air_quality.plot.scatter(x="station_london", y="station_paris", alpha=0.5) Out[9]: <Axes: xlabel='station_london', ylabel='station_paris'> In [10]: plt.show() ../../_images/04_airqual_scatter.png

Apart from the default line plot when using the plot function, a number of alternatives are available to plot data. Let’s use some standard Python to get an overview of the available plot methods:

In [11]: [ ....: method_name ....: for method_name in dir(air_quality.plot) ....: if not method_name.startswith("_") ....: ] ....: Out[11]: ['area', 'bar', 'barh', 'box', 'density', 'hexbin', 'hist', 'kde', 'line', 'pie', 'scatter']

Note

In many development environments such as IPython and Jupyter Notebook, use the TAB button to get an overview of the available methods, for example air_quality.plot. + TAB.

One of the options is DataFrame.plot.box(), which refers to a boxplot. The box method is applicable on the air quality example data:

In [12]: air_quality.plot.box() Out[12]: <Axes: > In [13]: plt.show() ../../_images/04_airqual_boxplot.png To user guide

For an introduction to plots other than the default line plot, see the user guide section about supported plot styles.

  • I want each of the columns in a separate subplot.

    In [14]: axs = air_quality.plot.area(figsize=(12, 4), subplots=True) In [15]: plt.show() ../../_images/04_airqual_area_subplot.png

    Separate subplots for each of the data columns are supported by the subplots argument of the plot functions. The builtin options available in each of the pandas plot functions are worth reviewing.

To user guide

Some more formatting options are explained in the user guide section on plot formatting.

  • I want to further customize, extend or save the resulting plot.

    In [16]: fig, axs = plt.subplots(figsize=(12, 4)) In [17]: air_quality.plot.area(ax=axs) Out[17]: <Axes: xlabel='datetime'> In [18]: axs.set_ylabel("NO$_2$ concentration") Out[18]: Text(0, 0.5, 'NO$_2$ concentration') In [19]: fig.savefig("no2_concentrations.png") In [20]: plt.show() ../../_images/04_airqual_customized.png

Each of the plot objects created by pandas is a Matplotlib object. As Matplotlib provides plenty of options to customize plots, making the link between pandas and Matplotlib explicit enables all the power of Matplotlib to the plot. This strategy is applied in the previous example:

fig, axs = plt.subplots(figsize=(12, 4)) # Create an empty Matplotlib Figure and Axes air_quality.plot.area(ax=axs) # Use pandas to put the area plot on the prepared Figure/Axes axs.set_ylabel("NO$_2$ concentration") # Do any Matplotlib customization you like fig.savefig("no2_concentrations.png") # Save the Figure/Axes using the existing Matplotlib method. plt.show() # Display the plot

REMEMBER

  • The .plot.* methods are applicable on both Series and DataFrames.

  • By default, each of the columns is plotted as a different element (line, boxplot, …).

  • Any plot created by pandas is a Matplotlib object.

To user guide

A full overview of plotting in pandas is provided in the visualization pages.

Tag » How To Plot A Dataframe In R