How Exactly Does Light Transform Into Heat - Scientific American

October 21, 1999

1 min read

Google Logo Add Us On GoogleAdd SciAm

How exactly does light transform into heat--for instance, when sunlight warms up a brick wall? I understand that electrons in the atoms in the wall absorb the light, but how does that absorbed sunlight turn into thermal energy?

Join Our Community of Science Lovers!

Sign Up for Our Free Daily NewsletterEnter your emailI agree my information will be processed in accordance with the Scientific American and Springer Nature Limited Privacy Policy. We leverage third party services to both verify and deliver email. By providing your email address, you also consent to having the email address shared with third parties for those purposes.Sign Up

It turns out that, as often happens in science, that there is more than one way to explain the same basic phenomenon.

Tom Zepf of the physics department at Creighton University in Omaha, Neb., notes that "Sunlight heats a material such as water or a brick primarily because the long wavelength, or infrared, portion of the sun's radiation resonates well with molecules in the material, thereby setting them into motion. So the energy transfer that causes the temperature of the substance to rise takes place at the molecular rather than the electronic level."

Scott M. Auerbach, a theoretical chemist at the University of Massachusetts at Amherst offers a more detailed answer:

On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.

"Light from the sun excites electrons in the atoms which constitute the brick wall. How does that electronic energy get converted to heat, you ask. The key is 'radiationless transitions.' Here's how it works: the atoms of the brick are perpetually vibrating. Some of those atoms vibrate sufficiently vigorously that their vibrational energy is roughly equal to the electronic energy (photons) absorbed from the sun--in essence, they are in resonance with the solar energy. Those atoms then make a quantum transition from 'electronically excited' to 'vibrationally excited,' meaning that the energy causes the whole atom to move. We feel that motion as "heat." The atoms which make the jump to vibrational excitation soon collide into neighboring atoms, dissipating their vibrational energy throughout the entire brick, making the brick hot throughout.

It’s Time to Stand Up for Science

If you enjoyed this article, I’d like to ask for your support. Scientific American has served as an advocate for science and industry for 180 years, and right now may be the most critical moment in that two-century history.

I’ve been a Scientific American subscriber since I was 12 years old, and it helped shape the way I look at the world. SciAm always educates and delights me, and inspires a sense of awe for our vast, beautiful universe. I hope it does that for you, too.

If you subscribe to Scientific American, you help ensure that our coverage is centered on meaningful research and discovery; that we have the resources to report on the decisions that threaten labs across the U.S.; and that we support both budding and working scientists at a time when the value of science itself too often goes unrecognized.

In return, you get essential news, captivating podcasts, brilliant infographics, can't-miss newsletters, must-watch videos, challenging games, and the science world's best writing and reporting. You can even gift someone a subscription.

There has never been a more important time for us to stand up and show why science matters. I hope you’ll support us in that mission.

Thank you,

David M. Ewalt, Editor in Chief, Scientific American

Subscribe

Subscribe to Scientific American to learn and share the most exciting discoveries, innovations and ideas shaping our world today.

Subscription PlansGive a Gift Subscription

Tag » What Can Happen To An Electron When Sunlight Hits It