How To Find Asymptotes Of Graphs - Singapore Maths Tuition

This post is all about finding  Vertical and Horizontal asymptotes of graphs.

Vertical Asymptotes

Usually, vertical asymptotes come about when there is a rational function with a numerator and a denominator, for instance, \displaystyle y=\frac{2}{x-3}. When the denominator is 0, the function is undefined, and hence there is a vertical asymptote there.

Hence, to find the asymptote, let the denominator be 0. E.g. x-3=0, so x=3.

graph1
\displaystyle y=\frac{2}{x-3}

Another way vertical asymptotes can come about is via logarithmic graphs, e.g. y=\ln (x+2).

\ln 0 is undefined, so when x+2=0 or x=-2, there will be a vertical asymptote at x=-2.

graph2
y=\ln (x+2)

Horizontal Asymptote

Horizontal asymptotes usually come about when one of the terms approaches zero as x approaches infinity.

To find the Horizontal Asymptote, find the value of y when x approaches infinity (i.e. when x becomes a very big number).

For example, \displaystyle y=\frac{1}{x}+1. When x is a very big number, say x=10000, y will be close to 1 since 1/10000 is almost zero. Hence, the horizontal asymptote is y=1.

graph3
\displaystyle y=\frac{1}{x}+1

Another time where Horizontal Asymptotes appear is for Exponential Graphs. For instance, y=e^{-x}+1. When x is very large, e^{-x} will be very small, and hence y approaches 1. This means that the Horizontal Asymptote will be y=1.

exponential
y=e^{-x}+1

Note: The graphs above were drawn using the software Geogebra. 🙂 Model-Centered Learning: Pathways to Mathematical Understanding Using GeoGebra

Share this:

  • X
  • Facebook
  • More
  • LinkedIn
  • Reddit
  • Tumblr
  • Pinterest
  • Pocket
  • Email
  • Print
Like Loading...

Related

Unknown's avatar

Author: mathtuition88

Math and Education Blog View all posts by mathtuition88

Tag » How To Find A Asymptote