Leg Power In Young Women: Relationship To Body Composition ...

Clipboard, Search History, and several other advanced features are temporarily unavailable. Skip to main page content Dot gov

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation pubmed logo Search: Search Advanced Clipboard User Guide Save Email Send to
  • Clipboard
  • My Bibliography
  • Collections
  • Citation manager
Display options Display options Format Abstract PubMed PMID

Save citation to file

Format: Summary (text) PubMed PMID Abstract (text) CSV Create file Cancel

Email citation

Email address has not been verified. Go to My NCBI account settings to confirm your email and then refresh this page. To: Subject: Body: Format: Summary Summary (text) Abstract Abstract (text) MeSH and other data Send email Cancel

Add to Collections

  • Create a new collection
  • Add to an existing collection
Name your collection: Name must be less than 100 characters Choose a collection: Unable to load your collection due to an error Please try again Add Cancel

Add to My Bibliography

  • My Bibliography
Unable to load your delegates due to an error Please try again Add Cancel

Your saved search

Name of saved search: Search terms: Test search terms Would you like email updates of new search results? Saved Search Alert Radio Buttons
  • Yes
  • No
Email: (change) Frequency: Monthly Weekly Daily Which day? The first Sunday The first Monday The first Tuesday The first Wednesday The first Thursday The first Friday The first Saturday The first day The first weekday Which day? Sunday Monday Tuesday Wednesday Thursday Friday Saturday Report format: Summary Summary (text) Abstract Abstract (text) PubMed Send at most: 1 item 5 items 10 items 20 items 50 items 100 items 200 items Send even when there aren't any new results Optional text in email: Save Cancel

Create a file for external citation management software

Create file Cancel

Your RSS Feed

Name of RSS Feed: Number of items displayed: 5 10 15 20 50 100 Create RSS Cancel RSS Link Copy

Full text links

Wolters Kluwer full text link Wolters Kluwer Full text links

Actions

CiteCollectionsAdd to Collections
  • Create a new collection
  • Add to an existing collection
Name your collection: Name must be less than 100 characters Choose a collection: Unable to load your collection due to an errorPlease try again Add Cancel PermalinkPermalinkCopyDisplay options Display options Format AbstractPubMedPMID

Page navigation

  • Title & authors
  • Abstract
  • Publication types
  • MeSH terms
  • LinkOut - more resources
Title & authors Abstract Publication types MeSH terms LinkOut - more resources Full text links CiteDisplay options Display options Format AbstractPubMedPMID

Abstract

The ability to generate high forces at high velocity (power) is an important component of physiologic reserve for both athletic performance and functional capacity. A comparison was made between different laboratory methods and field tests designed to evaluate leg power. Nineteen young healthy untrained women participated in this study. Maximum power during the double leg press (KP) occurred between 56-78% of the one repetition maximum (1-RM) and averaged (404 +/- 22 W). Rank-ordered correlation showed an association between KP and another measure of leg power measured on the leg extensor power rig (LR) when expressed per kg LBM (Rho = 0.565, P < 0.016). KP was also related to the 1-RM achieved on the double leg press (R2 = 0.584, P < 0.001). The KP test also correlated with the vertical jump (R2 = 0.538, P < 0.004) and maximal power output during the Wingate anaerobic power test (R2 = 0.299, P < 0.015). However, double leg press power was not related to time to run 40 yards (R2 = 0.020, P < 0.573) or maximal gait velocity (R2 = 0.136, P < 0.121). These results suggest that maximal power during the double leg press occurs at a higher percentage of maximal strength than previously reported. Double leg press power was related to vertical jump performance, validating this field test as a measure of leg muscle power in young women.

PubMed Disclaimer

Publication types

  • Research Support, Non-U.S. Gov't Actions
    • Search in PubMed
    • Search in MeSH
    • Add to Search
  • Research Support, U.S. Gov't, Non-P.H.S. Actions
    • Search in PubMed
    • Search in MeSH
    • Add to Search

MeSH terms

  • Adult Actions
    • Search in PubMed
    • Search in MeSH
    • Add to Search
  • Body Composition* Actions
    • Search in PubMed
    • Search in MeSH
    • Add to Search
  • Energy Metabolism Actions
    • Search in PubMed
    • Search in MeSH
    • Add to Search
  • Female Actions
    • Search in PubMed
    • Search in MeSH
    • Add to Search
  • Gait Actions
    • Search in PubMed
    • Search in MeSH
    • Add to Search
  • Humans Actions
    • Search in PubMed
    • Search in MeSH
    • Add to Search
  • Leg / physiology* Actions
    • Search in PubMed
    • Search in MeSH
    • Add to Search
  • Reproducibility of Results Actions
    • Search in PubMed
    • Search in MeSH
    • Add to Search

LinkOut - more resources

  • Full Text Sources

    • Ovid Technologies, Inc.
    • Wolters Kluwer
Full text links [x] Wolters Kluwer full text link Wolters Kluwer [x] Cite Copy Download .nbib .nbib Format: AMA APA MLA NLM Send To
  • Clipboard
  • Email
  • Save
  • My Bibliography
  • Collections
  • Citation Manager
[x]

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

Tag » What Is Between A Girls Legs