The Mercedes-Benz first series of automatic transmission was produced from 1961 to 1983 in 4- and 3-speed variants for Mercedes-Benz passenger cars. In addition, variants for commercial vehicles were offered until the mid-1990s.
This transmission was the first Mercedes-Benz automatic transmission in-house developing.[1] Before this, the company used semi-automatic systems like a vacuum-powered shifting for overdrive or the "Hydrak" hydraulic automatic clutch system. Alternatively, they bought automatic transmissions of other vendors, such as the Detroit gear 3-speed automatic transmission from BorgWarner for the 300 c and 300 d (not to be confused with the later 300 D and its successors).
The automatic transmissions are for engines with longitudinal layout for rear-wheel-drive layout passenger cars. The control of the fully automatic system is fully hydraulic and it uses electrical wire only for the kickdown solenoid valve and the neutral safety switch.
Physically, it can be recognized for its pan which uses 16 bolts.
^ Differences in gear ratios have a measurable, direct impact on vehicle dynamics, performance, waste emissions as well as fuel mileage
^ abcdefg Forward gears only
^ abcdFluid coupling · German: Kupplung or Flüssigkeitskupplung
^ Unveiled in September 1963 at the International Motor Show in Frankfurt, it went into production in September 1964
^ abcdTorque converter · German: Wandler or Drehmomentwandler
^ for light-duty trucks and vans up to 5,600 kg (12,350 lb) and off-road vehicles[4][6]
^ for medium-duty trucks up to 13,000 kg (28,660 lb)[7][8]
1961: K4A 025— 4-Speed Transmission With 2 Planetary Gearsets —
[edit] K4A 025 transmission left hand side view K4A 025 transmission right hand side view
Layout
[edit]
The K4A 025 is the first of the series, launched in April 1961 for the W 111 220 SEb, later replaced with the more reliable K4C 025 (type 722.2). It is a 4-speed unit and uses fluid coupling (also referred in some manuals as hydraulic/automatic clutch).
The design of the transmission results in poor shifting comfort, which does not meet Mercedes-Benz standards. This applies in particular to the change from 2nd to 3rd gear (and vice versa), which requires a group change, i.e. affects all shift elements.
Specifications
[edit]
For this first 4-speed model[a] 8 main components[b] are used. It is the only exemption which uses only 2 planetary gearsets for 4 speeds.
Gear Ratio Analysis
In-Depth AnalysisWith Assessment[c]
Planetary Gearset:[d] Teeth
Count
Nomi-nal[e]Effec-tive[f]
Cen-ter[g]
Simple
Avg.[h]
ModelType
VersionFirst Delivery
S1[i]R1[j]
S2[k]R2[l]
BrakesClutches
RatioSpan
GearStep[m]
GearRatio
R i R {\displaystyle {i_{R}}}
1 i 1 {\displaystyle {i_{1}}}
2 i 2 {\displaystyle {i_{2}}}
3 i 3 {\displaystyle {i_{3}}}
4 i 4 {\displaystyle {i_{4}}}
Step[m]
− i R i 1 {\displaystyle -{\frac {i_{R}}{i_{1}}}} [n]
i 1 i 1 {\displaystyle {\frac {i_{1}}{i_{1}}}}
i 1 i 2 {\displaystyle {\frac {i_{1}}{i_{2}}}} [o]
i 2 i 3 {\displaystyle {\frac {i_{2}}{i_{3}}}}
i 3 i 4 {\displaystyle {\frac {i_{3}}{i_{4}}}}
Δ Step[p][q]
i 1 i 2 : i 2 i 3 {\displaystyle {\tfrac {i_{1}}{i_{2}}}:{\tfrac {i_{2}}{i_{3}}}}
i 2 i 3 : i 3 i 4 {\displaystyle {\tfrac {i_{2}}{i_{3}}}:{\tfrac {i_{3}}{i_{4}}}}
ShaftSpeed
i 1 i R {\displaystyle {\frac {i_{1}}{i_{R}}}}
i 1 i 1 {\displaystyle {\frac {i_{1}}{i_{1}}}}
i 1 i 2 {\displaystyle {\frac {i_{1}}{i_{2}}}}
i 1 i 3 {\displaystyle {\frac {i_{1}}{i_{3}}}}
i 1 i 4 {\displaystyle {\frac {i_{1}}{i_{4}}}}
Δ ShaftSpeed[r]
0 − i 1 i R {\displaystyle 0-{\frac {i_{1}}{i_{R}}}}
i 1 i 1 − 0 {\displaystyle {\tfrac {i_{1}}{i_{1}}}-0}
i 1 i 2 − i 1 i 1 {\displaystyle {\tfrac {i_{1}}{i_{2}}}-{\tfrac {i_{1}}{i_{1}}}}
i 1 i 3 − i 1 i 2 {\displaystyle {\tfrac {i_{1}}{i_{3}}}-{\tfrac {i_{1}}{i_{2}}}}
i 1 i 4 − i 1 i 3 {\displaystyle {\tfrac {i_{1}}{i_{4}}}-{\tfrac {i_{1}}{i_{3}}}}
SpecificTorque[s]
T 2 ; R T 1 ; R {\displaystyle {\tfrac {T_{2;R}}{T_{1;R}}}} [t]
T 2 ; 1 T 1 ; 1 {\displaystyle {\tfrac {T_{2;1}}{T_{1;1}}}} [t]
T 2 ; 2 T 1 ; 2 {\displaystyle {\tfrac {T_{2;2}}{T_{1;2}}}} [t]
T 2 ; 3 T 1 ; 3 {\displaystyle {\tfrac {T_{2;3}}{T_{1;3}}}} [t]
T 2 ; 4 T 1 ; 4 {\displaystyle {\tfrac {T_{2;4}}{T_{1;4}}}} [t]
Efficiency η n {\displaystyle \eta _{n}} [s]
T 2 ; R T 1 ; R : i R {\displaystyle {\tfrac {T_{2;R}}{T_{1;R}}}:{i_{R}}}
T 2 ; 1 T 1 ; 1 : i 1 {\displaystyle {\tfrac {T_{2;1}}{T_{1;1}}}:{i_{1}}}
T 2 ; 2 T 1 ; 2 : i 2 {\displaystyle {\tfrac {T_{2;2}}{T_{1;2}}}:{i_{2}}}
T 2 ; 3 T 1 ; 3 : i 3 {\displaystyle {\tfrac {T_{2;3}}{T_{1;3}}}:{i_{3}}}
T 2 ; 4 T 1 ; 4 : i 4 {\displaystyle {\tfrac {T_{2;4}}{T_{1;4}}}:{i_{4}}}
i R = − R 1 ( S 2 + R 2 ) S 1 S 2 {\displaystyle i_{R}=-{\frac {R_{1}(S_{2}+R_{2})}{S_{1}S_{2}}}}
i 2 = S 1 + R 1 S 1 {\displaystyle i_{2}={\frac {S_{1}+R_{1}}{S_{1}}}}
i 4 = 1 1 {\displaystyle i_{4}={\frac {1}{1}}}
i R = − R 1 S 1 ( 1 + R 2 S 2 ) {\displaystyle i_{R}=-{\tfrac {R_{1}}{S_{1}}}\left(1+{\tfrac {R_{2}}{S_{2}}}\right)}
i 2 = 1 + R 1 S 1 {\displaystyle i_{2}=1+{\tfrac {R_{1}}{S_{1}}}}
Ratio1 & 3Ordinary[aa]ElementaryNoted[ab]
i 1 = ( S 1 + R 1 ) ( S 2 + R 2 ) S 1 R 2 {\displaystyle i_{1}={\frac {(S_{1}+R_{1})(S_{2}+R_{2})}{S_{1}R_{2}}}}
i 3 = S 2 + R 2 R 2 {\displaystyle i_{3}={\frac {S_{2}+R_{2}}{R_{2}}}}
i 1 = ( 1 + R 1 S 1 ) ( 1 + S 2 R 2 ) {\displaystyle i_{1}=\left(1+{\tfrac {R_{1}}{S_{1}}}\right)\left(1+{\tfrac {S_{2}}{R_{2}}}\right)}
i 3 = 1 + S 2 R 2 {\displaystyle i_{3}=1+{\tfrac {S_{2}}{R_{2}}}}
Kinetic Ratios
SpecificTorque[s]R & 2 & 4
T 2 ; R T 1 ; R = − R 1 S 1 η 0 ( 1 + R 2 S 2 η 0 ) {\displaystyle {\tfrac {T_{2;R}}{T_{1;R}}}=-{\tfrac {R_{1}}{S_{1}}}\eta _{0}\left(1+{\tfrac {R_{2}}{S_{2}}}\eta _{0}\right)}
T 2 ; 2 T 1 ; 2 = 1 + R 1 S 1 η 0 {\displaystyle {\tfrac {T_{2;2}}{T_{1;2}}}=1+{\tfrac {R_{1}}{S_{1}}}\eta _{0}}
T 2 ; 4 T 1 ; 4 = 1 1 {\displaystyle {\tfrac {T_{2;4}}{T_{1;4}}}={\tfrac {1}{1}}}
SpecificTorque[s]1 & 3
T 2 ; 1 T 1 ; 1 = ( 1 + R 1 S 1 η 0 ) ( 1 + S 2 R 2 η 0 ) {\displaystyle {\tfrac {T_{2;1}}{T_{1;1}}}=\left(1+{\tfrac {R_{1}}{S_{1}}}\eta _{0}\right)\left(1+{\tfrac {S_{2}}{R_{2}}}\eta _{0}\right)}
T 2 ; 3 T 1 ; 3 = 1 + S 2 R 2 η 0 {\displaystyle {\tfrac {T_{2;3}}{T_{1;3}}}=1+{\tfrac {S_{2}}{R_{2}}}\eta _{0}}
^ Also BR (brake for reverse gear · German: Bremse für Rückwärtsgang) · blocks C1 and R2
^ Couples C1 and R2 with the input (turbine)
^ Couples C1 and R2 with S2
^ Also KR (clutch for reverse gear · German: Kupplung für Rückwärtsgang) · couples R1 with S2
^ abOrdinary Noted
For direct determination of the ratio
^ abElementary Noted
Alternative representation for determining the transmission ratio
Contains only operands
With simple fractions of both central gears of a planetary gearset
Or with the value 1
As a basis
For reliable
And traceable
Determination of specific torque and efficiency
1964: K4B 050 And Follow-Up Products— 4-Speed Transmissions With 3 Planetary Gearsets —
[edit]
Layout
[edit]
The Mercedes-Benz 600, unveiled in September 1963 at the International Motor Show in Frankfurt, it went into production in September 1964 and was the first post-war "Grand Mercedes", powered by the Mercedes-Benz M100 engine. This made a gearbox for the highest demands of luxury vehicles necessary. The design of the gearbox in the range was out of the question from the outset. The introduction of the 600 was therefore taken as an opportunity to develop a completely new design for the automatic transmission.
Models
[edit]
1964: K4B 050
[edit]
The first model with this new layout was the K4B 050. Beside the new layout the number of pinions is doubled from 3 to 6 to handle the much higher torque of the big block V8 engine.
1967: K4C 025
[edit]
After the satisfactory experience with the new design, it was adopted in 1967 for the new core model K4C 025 (Type 722.2) of the first automatic transmission series from Mercedes-Benz. With the small block V8 engine M 116, the K4A 040 (Type 722.2) was launched as a reinforced version of the same design.
1969: K4A 040
[edit]
With the introduction of the V8 cylinder engines of the M 116 series with a displacement of 3.5 liters, the automatic transmission range was expanded to include the K4A 040 model, which is a reinforced version of the K4C 025 with the same gear ratios to accomodate the increased torque.
1972: W4B 025
[edit]
When the torque converter technique was fully established, the fluid coupling was replaced by a torque converter for the smaller engines, which leads to the W4B 025 (type 722.1).[5] Used in L4, L5 and L6 engines due to its lower torque output. In normal situations, it rests stationary in 2nd gear, but it will use 1st gear when the vehicle starts moving and throttle is applied[9] or if L position is selected in gear selector.
Variants For Commercial Cars
[edit]
The W4A 018 (type 720.1) was derived from the W4B 025 (type 722.1) for light-duty trucks and vans up to 5,600 kg (12,350 lb) and off-road vehicles,[4][6] the W4B 035 from the W4B 025 (type 722.1) and K4A 040 (type 722.2) for medium-duty trucks up to 13,000 kg (28,660 lb).[7][8] The main difference is the use of straight-cut planetary gearsets instead of helical-cut ones for better fuel efficiency at the price of lower noise comfort.
Specifications
[edit]
For this second 4-speed models[a] 8 main components[b] are used.[5]
Gear Ratio Analysis
In-Depth AnalysisWith Assessment[c]
Planetary Gearset:[d] Teeth
Count
Nomi-nal[e]Effec-tive[f]
Cen-ter[g]
Simpson
Simple
Avg.[h]
ModelType
VersionFirst Delivery
S1[i]R1[j]
S2[k]R2[l]
S3[m]R3[n]
BrakesClutches
RatioSpan
GearStep[o]
GearRatio
R i R {\displaystyle {i_{R}}}
1 i 1 {\displaystyle {i_{1}}}
2 i 2 {\displaystyle {i_{2}}}
3 i 3 {\displaystyle {i_{3}}}
4 i 4 {\displaystyle {i_{4}}}
Step[o]
− i R i 1 {\displaystyle -{\frac {i_{R}}{i_{1}}}} [p]
i 1 i 1 {\displaystyle {\frac {i_{1}}{i_{1}}}}
i 1 i 2 {\displaystyle {\frac {i_{1}}{i_{2}}}} [q]
i 2 i 3 {\displaystyle {\frac {i_{2}}{i_{3}}}}
i 3 i 4 {\displaystyle {\frac {i_{3}}{i_{4}}}}
Δ Step[r][s]
i 1 i 2 : i 2 i 3 {\displaystyle {\tfrac {i_{1}}{i_{2}}}:{\tfrac {i_{2}}{i_{3}}}}
i 2 i 3 : i 3 i 4 {\displaystyle {\tfrac {i_{2}}{i_{3}}}:{\tfrac {i_{3}}{i_{4}}}}
ShaftSpeed
i 1 i R {\displaystyle {\frac {i_{1}}{i_{R}}}}
i 1 i 1 {\displaystyle {\frac {i_{1}}{i_{1}}}}
i 1 i 2 {\displaystyle {\frac {i_{1}}{i_{2}}}}
i 1 i 3 {\displaystyle {\frac {i_{1}}{i_{3}}}}
i 1 i 4 {\displaystyle {\frac {i_{1}}{i_{4}}}}
Δ ShaftSpeed[t]
0 − i 1 i R {\displaystyle 0-{\tfrac {i_{1}}{i_{R}}}}
i 1 i 1 − 0 {\displaystyle {\tfrac {i_{1}}{i_{1}}}-0}
i 1 i 2 − i 1 i 1 {\displaystyle {\tfrac {i_{1}}{i_{2}}}-{\tfrac {i_{1}}{i_{1}}}}
i 1 i 3 − i 1 i 2 {\displaystyle {\tfrac {i_{1}}{i_{3}}}-{\tfrac {i_{1}}{i_{2}}}}
i 1 i 4 − i 1 i 3 {\displaystyle {\tfrac {i_{1}}{i_{4}}}-{\tfrac {i_{1}}{i_{3}}}}
SpecificTorque[u]
T 2 ; R T 1 ; R {\displaystyle {\tfrac {T_{2;R}}{T_{1;R}}}} [v]
T 2 ; 1 T 1 ; 1 {\displaystyle {\tfrac {T_{2;1}}{T_{1;1}}}} [v]
T 2 ; 2 T 1 ; 2 {\displaystyle {\tfrac {T_{2;2}}{T_{1;2}}}} [v]
T 2 ; 3 T 1 ; 3 {\displaystyle {\tfrac {T_{2;3}}{T_{1;3}}}} [v]
T 2 ; 4 T 1 ; 4 {\displaystyle {\tfrac {T_{2;4}}{T_{1;4}}}} [v]
Efficiency η n {\displaystyle \eta _{n}} [u]
T 2 ; R T 1 ; R : i R {\displaystyle {\tfrac {T_{2;R}}{T_{1;R}}}:{i_{R}}}
T 2 ; 1 T 1 ; 1 : i 1 {\displaystyle {\tfrac {T_{2;1}}{T_{1;1}}}:{i_{1}}}
T 2 ; 2 T 1 ; 2 : i 2 {\displaystyle {\tfrac {T_{2;2}}{T_{1;2}}}:{i_{2}}}
T 2 ; 3 T 1 ; 3 : i 3 {\displaystyle {\tfrac {T_{2;3}}{T_{1;3}}}:{i_{3}}}
T 2 ; 4 T 1 ; 4 : i 4 {\displaystyle {\tfrac {T_{2;4}}{T_{1;4}}}:{i_{4}}}
i R = − R 1 ( S 3 + R 3 ) S 1 S 3 {\displaystyle i_{R}=-{\frac {R_{1}(S_{3}+R_{3})}{S_{1}S_{3}}}}
i 1 = ( S 1 + R 1 ) ( S 3 + R 3 ) S 1 R 3 {\displaystyle i_{1}={\frac {(S_{1}+R_{1})(S_{3}+R_{3})}{S_{1}R_{3}}}}
i R = − R 1 S 1 ( 1 + R 3 S 3 ) {\displaystyle i_{R}=-{\tfrac {R_{1}}{S_{1}}}\left(1+{\tfrac {R_{3}}{S_{3}}}\right)}
i 1 = ( 1 + R 1 S 1 ) ( 1 + S 3 R 3 ) {\displaystyle i_{1}=\left(1+{\tfrac {R_{1}}{S_{1}}}\right)\left(1+{\tfrac {S_{3}}{R_{3}}}\right)}
Ratio2 & 3 & 4Ordinary[ad]ElementaryNoted[ae]
i 2 = ( S 1 ( S 2 + R 2 ) + R 1 S 2 ) ( S 3 + R 3 ) S 1 ( S 2 + R 2 ) R 3 {\displaystyle i_{2}={\frac {(S_{1}(S_{2}+R_{2})+R_{1}S_{2})(S_{3}+R_{3})}{S_{1}(S_{2}+R_{2})R_{3}}}}
i 3 = S 3 + R 3 R 3 {\displaystyle i_{3}={\frac {S_{3}+R_{3}}{R_{3}}}}
i 2 = ( 1 + R 1 S 1 1 + R 2 S 2 ) ( 1 + S 3 R 3 ) {\displaystyle i_{2}=\left(1+{\tfrac {\tfrac {R_{1}}{S_{1}}}{1+{\tfrac {R_{2}}{S_{2}}}}}\right)\left(1+{\tfrac {S_{3}}{R_{3}}}\right)}
i 3 = 1 + S 3 R 3 {\displaystyle i_{3}=1+{\tfrac {S_{3}}{R_{3}}}}
i 4 = 1 1 {\displaystyle i_{4}={\frac {1}{1}}}
Kinetic Ratios
SpecificTorque[u]R & 1
T 2 ; R T 1 ; R = − R 1 S 1 η 0 ( 1 + R 3 S 3 η 0 ) {\displaystyle {\tfrac {T_{2;R}}{T_{1;R}}}=-{\tfrac {R_{1}}{S_{1}}}\eta _{0}\left(1+{\tfrac {R_{3}}{S_{3}}}\eta _{0}\right)}
T 2 ; 1 T 1 ; 1 = ( 1 + R 1 S 1 η 0 ) ( 1 + S 3 R 3 η 0 ) {\displaystyle {\tfrac {T_{2;1}}{T_{1;1}}}=\left(1+{\tfrac {R_{1}}{S_{1}}}\eta _{0}\right)\left(1+{\tfrac {S_{3}}{R_{3}}}\eta _{0}\right)}
SpecificTorque[u]2 & 3 & 4
T 2 ; 2 T 1 ; 2 = ( 1 + R 1 S 1 η 0 1 + R 2 S 2 ⋅ 1 η 0 ) ( 1 + S 3 R 3 η 0 ) {\displaystyle {\tfrac {T_{2;2}}{T_{1;2}}}=\left(1+{\tfrac {{\tfrac {R_{1}}{S_{1}}}\eta _{0}}{1+{\tfrac {R_{2}}{S_{2}}}\cdot {\tfrac {1}{\eta _{0}}}}}\right)\left(1+{\tfrac {S_{3}}{R_{3}}}\eta _{0}\right)}
T 2 ; 3 T 1 ; 3 = 1 + S 3 R 3 η 0 {\displaystyle {\tfrac {T_{2;3}}{T_{1;3}}}=1+{\tfrac {S_{3}}{R_{3}}}\eta _{0}}
T 2 ; 4 T 1 ; 4 = 1 1 {\displaystyle {\tfrac {T_{2;4}}{T_{1;4}}}={\frac {1}{1}}}
^ for light-duty trucks and vans up to 5,600 kg (12,350 lb) and off-road vehicles[4][6]
^ for medium-duty trucks up to 13,000 kg (28,660 lb)[7][8]
^ Blocks S2
^ Blocks S3
^ Also BR (brake for reverse gear · German: Bremse für Rückwärtsgang) · Blocks C1
^ Couples S2 with C2
^ Couples R1 with S3
^ abOrdinary Noted
For direct determination of the ratio
^ abElementary Noted
Alternative representation for determining the transmission ratio
Contains only operands
With simple fractions of both central gears of a planetary gearset
Or with the value 1
As a basis
For reliable
And traceable
Determination of specific torque and efficiency
1971: W3A 040 And Follow-Up Products— 3-Speed Transmissions With 2 Planetary Gearsets —
[edit]
Layout
[edit]
When the torque converter technique was fully established, 3-speed units, the W3A 040 and W3B 050 (type 722.0) is combined with V8 engines, and it uses torque converter instead of fluid coupling.[1][5] The transmission saves 1 planetary gearset and uses the same housing as the 4-speed versions. The free space therefore is used to reinforce the shift elements (brakes and clutches) to handle the higher torque of the V8 engines.
First the W3A 040 was released for the all new M117 V8 engine of the W 108 and W 109 in 1971. The second in the series is the W3B 050, which was released initially for the W 116 450 SE/SEL in 1973. At that time the 4-speed transmission for the 350 SE/SEL was replaced by this 3-speed model. The reinforced W3B 050 reinforced (type 722.003) is the strongest of the series, able to handle the input of the enlarged version of the M 100, the biggest Mercedes-Benz engine in post-war history,[10] exclusively used in the W 116 450 SEL 6.9.
Specifications
[edit]
For the 3-speed models[a] 7 main components[b] are used, which shows economic equivalence with the direct competitor.
Gear Ratio Analysis
In-Depth AnalysisWith Assessment[c]
PlanetaryGearset:[d]
Count
Nomi-nal[e]Effec-tive[f]
Cen-ter[g]
Simpson
Avg.[h]
ModelType
VersionFirst Delivery
S1[i]R1[j]
S2[k]R2[l]
BrakesClutches
RatioSpan
GearStep[m]
GearRatio
R i R {\displaystyle {i_{R}}}
1 i 1 {\displaystyle {i_{1}}}
2 i 2 {\displaystyle {i_{2}}}
3 i 3 {\displaystyle {i_{3}}}
Step[m]
− i R i 1 {\displaystyle -{\frac {i_{R}}{i_{1}}}} [n]
i 1 i 1 {\displaystyle {\frac {i_{1}}{i_{1}}}}
i 1 i 2 {\displaystyle {\frac {i_{1}}{i_{2}}}} [o]
i 2 i 3 {\displaystyle {\frac {i_{2}}{i_{3}}}}
Δ Step[p][q]
i 1 i 2 : i 2 i 3 {\displaystyle {\tfrac {i_{1}}{i_{2}}}:{\tfrac {i_{2}}{i_{3}}}}
ShaftSpeed
i 1 i R {\displaystyle {\frac {i_{1}}{i_{R}}}}
i 1 i 1 {\displaystyle {\frac {i_{1}}{i_{1}}}}
i 1 i 2 {\displaystyle {\frac {i_{1}}{i_{2}}}}
i 1 i 3 {\displaystyle {\frac {i_{1}}{i_{3}}}}
Δ ShaftSpeed[r]
0 − i 1 i R {\displaystyle 0-{\tfrac {i_{1}}{i_{R}}}}
i 1 i 1 − 0 {\displaystyle {\tfrac {i_{1}}{i_{1}}}-0}
i 1 i 2 − i 1 i 1 {\displaystyle {\tfrac {i_{1}}{i_{2}}}-{\tfrac {i_{1}}{i_{1}}}}
i 1 i 3 − i 1 i 2 {\displaystyle {\tfrac {i_{1}}{i_{3}}}-{\tfrac {i_{1}}{i_{2}}}}
SpecificTorque[s]
T 2 ; R T 1 ; R {\displaystyle {\frac {T_{2;R}}{T_{1;R}}}} [t]
T 2 ; 1 T 1 ; 1 {\displaystyle {\frac {T_{2;1}}{T_{1;1}}}} [t]
T 2 ; 2 T 1 ; 2 {\displaystyle {\frac {T_{2;2}}{T_{1;2}}}} [t]
T 2 ; 3 T 1 ; 3 {\displaystyle {\frac {T_{2;3}}{T_{1;3}}}} [t]
Efficiency η n {\displaystyle \eta _{n}} [s]
T 2 ; R T 1 ; R : i R {\displaystyle {\tfrac {T_{2;R}}{T_{1;R}}}:{i_{R}}}
T 2 ; 1 T 1 ; 1 : i 1 {\displaystyle {\tfrac {T_{2;1}}{T_{1;1}}}:{i_{1}}}
T 2 ; 2 T 1 ; 2 : i 2 {\displaystyle {\tfrac {T_{2;2}}{T_{1;2}}}:{i_{2}}}
T 2 ; 3 T 1 ; 3 : i 3 {\displaystyle {\tfrac {T_{2;3}}{T_{1;3}}}:{i_{3}}}
i R = − S 1 ( S 2 + R 2 ) R 1 S 2 {\displaystyle i_{R}=-{\frac {S_{1}(S_{2}+R_{2})}{R_{1}S_{2}}}}
i 2 = S 2 + R 2 R 2 {\displaystyle i_{2}={\frac {S_{2}+R_{2}}{R_{2}}}}
i R = − S 1 R 1 ( 1 + R 2 S 2 ) {\displaystyle i_{R}=-{\tfrac {S_{1}}{R_{1}}}(1+{\tfrac {R_{2}}{S_{2}}})}
i 2 = 1 + S 2 R 2 {\displaystyle i_{2}=1+{\tfrac {S_{2}}{R_{2}}}}
Ratio1 & 3Ordinary[z]ElementaryNoted[aa]
i 1 = ( S 1 + R 1 ) ( S 2 + R 2 ) R 1 R 2 {\displaystyle i_{1}={\frac {(S_{1}+R_{1})(S_{2}+R_{2})}{R_{1}R_{2}}}}
i 3 = 1 1 {\displaystyle i_{3}={\frac {1}{1}}}
i 1 = ( 1 + S 1 R 1 ) ( 1 + S 2 R 2 ) {\displaystyle i_{1}=\left(1+{\tfrac {S_{1}}{R_{1}}}\right)\left(1+{\tfrac {S_{2}}{R_{2}}}\right)}
i 3 = 1 1 {\displaystyle i_{3}={\frac {1}{1}}}
Kinetic Ratios
SpecificTorque[s]R & 2
i R = − S 1 R 1 η 0 ( 1 + R 2 S 2 η 0 ) {\displaystyle i_{R}=-{\tfrac {S_{1}}{R_{1}}}\eta _{0}(1+{\tfrac {R_{2}}{S_{2}}}\eta _{0})}
i 2 = 1 + S 2 R 2 η 0 {\displaystyle i_{2}=1+{\tfrac {S_{2}}{R_{2}}}\eta _{0}}
SpecificTorque[s]1 & 3
i 1 = ( 1 + S 1 R 1 η 0 ) ( 1 + S 2 R 2 η 0 ) {\displaystyle i_{1}=\left(1+{\tfrac {S_{1}}{R_{1}}}\eta _{0}\right)\left(1+{\tfrac {S_{2}}{R_{2}}}\eta _{0}\right)}
Alternative representation for determining the transmission ratio
Contains only operands
With simple fractions of both central gears of a planetary gearset
Or with the value 1
As a basis
For reliable
And traceable
Determination of specific torque and efficiency
Applications
[edit]
K4A 025
[edit]
1961–1965 (saloon) · 1961–1968 (coupé/convertible) W 111
1961–1965 (saloon) · 1962–1968 (coupé/convertible) W 112
1961–1968 W 110
1963–1971 W 113
1965–1968 W 108/W 109
K4B 050
[edit]
1964–1981 600 (W 100)
1968–1972 300 SEL 6.3 (W 109)
K4C 025
[edit]
1968–1971 (coupé/convertible) W 111
1968–1972 W 108/W 109
W 114/W 115
Chassis code
Car model
Engine code
Transmissioncode
114.015 and 114.615
230.6
180.954
722.203
114.017 and 114.617
230.6 Lang
114.011 and 114.611
250
130.923
722.204
114.023 and 114.623
250 C
114.060 and 114.660
280
110.921
722.202
114.073 and 114.673
280 C
114.062 and 114.662
280 E
110.981
722.200
114.072 and 114.672
280 CE
115.015 and 115.615
200
115.923
722.205
115.010
220
115.920
115.115 and 115.715
200 D
615.913
722.206
115.110 and 115.710
220 D
615.912
115.112
220 D Lang
K4A 040
[edit]
W 108/W 109
Chassis code
Car model
Engine code
Transmissioncode
Notes
109.057
300 SEL 3.5
3.5 L M 116 V8
722.201
worldwideexcept USA
108.067
280 SE 3.5
108.068
280 SEL 3.5
R 107/C 107
Chassis code
Car model
Engine code
Transmissioncode
107.043
350 SL
116.982 (D-Jet)116.984 (K-Jet)
722.201
107.023
350 SLC
W3A 040
[edit]
W 108/W 109
Chassis code
Car model
Engine code
Transmissioncode
Notes
109.056
300 SEL 4.5
4.5 L M 117 V8
722.000
USA only
108.057
280 SE 4.5
108.058
280 SEL 4.5
R 107/C 107
Chassis code
Car model
Engine code
Transmissioncode
Notes
107.043
350 SL
116.982 (D-Jet)116.984 (K-Jet)
722.002
107.023
350 SLC
107.044
450 SL
117.982 (D-Jet)117.985 (K-Jet)
722.004
USA andJapan only
107.024
450 SLC
W 116
Chassis code
Car model
Engine code
Transmissioncode
Notes
116.028
350 SE
116.983 (D-Jet)116.985 (K-Jet)
722.002
116.029
350 SEL
116.032
450 SE
117.983 (D-Jet)117.986 (K-Jet)
722.004
USA andJapan only
116.033
450 SEL
W3B 050
[edit]
R 107/C 107
Chassis code
Car model
Engine code
Transmissioncode
Notes
107.044
450 SL
117.982 (D-Jet)117.985 (K-Jet)
722.001
worldwide exceptUSA and Japan
107.024
450 SLC
W 116
Chassis code
Car model
Engine code
Transmissioncode
Notes
116.032
450 SE
117.983 (D-Jet)117.986 (K-Jet)
722.001
worldwide exceptUSA and Japan
116.033
450 SEL
116.036
450 SEL 6.9
100.985
722.003
722.003W3B 050 reinforced[12]
W4B 025
[edit]
R 107/C 107
Chassis code
Car model
Engine code
Transmissioncode
107.042
280 SL
110.982110.986110.990
722.103722.112
107.022
280 SLC
110.982110.986
W 114/W 115
Chassis code
Car model
Engine code
Transmissioncode
114.015 and 114.615
230.6
180.954
722.105
114.017 and 114.617
230.6 Lang
114.011 and 114.611
250
130.923
722.104
114.023 and 114.623
250 C
114.060 and 114.660
280
110.921
722.102
114.073 and 114.673
280 C
114.062 and 114.662
280 E
110.981
722.103
114.072 and 114.672
280 CE
115.015 and 115.615
200
115.923
722.106
115.017
230.4
115.951
722.110
115.115 and 115.715
200 D
615.913
722.107
115.110 and 115.710
220 D
615.912
115.112
220 D Lang
115.117
240 D
616.916
722.108
115.119
240 D Lang
115.114
240 D 3.0
617.910
722.109
W 116
Chassis code
Car model
Engine code
Transmissioncode
Notes
116.020
280 S
110.922
722.100722.102722.111
116.024
280 SE
110.983 (D-Jet)110.985 (K-Jet)
722.101722.103722.112
116.025
280 SEL
116.120
300 SD
617.950
722.120
USA only
W 123
Chassis code
Car model
Engine code
Transmissioncode
Notes
123.020
200
115.938115.939
722.115
123.220
200
102.920102.939
722.121
123.280
200 T
123.023
230
115.954
722.119
123.083
230 T
123.043
230 C
123.223
230 E
102.980
722.122
123.283
230 TE
123.243
230 CE
123.026
250
123.920123.921
722.113
123.086
250 T
123.028
250 Lang
123.030
280
110.923
722.111
123.050
280 C
123.033
280 E
110.984110.988
722.112
123.093
280 TE
123.053
280 CE
123.120
200 D
615.940
722.116
123.126
220 D
615.941
123.123
240 D
616.912
722.117
123.183
240 TD
123.125
240 D Lang
123.130
300 D
617.912
722.118
123.190
300 TD
123.132
300 D Lang
123.150
300 CD
USA only
See also
[edit]
Cars portal
List of Daimler AG transmissions
References
[edit]
^ ab"50 years of automatic transmissions from Mercedes-Benz".
^ abJohannes Looman · Gear Transmissions · Pp. 133 ff · German: Johannes Looman · Zahnradgetriebe · Berlin und Heidelberg 1970 · Print ISBN 978-3-540-04894-7 · S. 133 ff
^ abResult And Outlook · commemorative publication for Prof. Dr. Hans-Joachim Foerster on the occasion of leaving as director from active duty at Daimler-Benz AG · November 1982 · Pp. 6 & 20 · German: Ergebnis und Ausblick · Festschrift für Herrn Prof. Dr. Hans Joachim Förster zum Ausscheiden als Direktor aus dem aktiven Dienst der Daimler-Benz AG · November 1982 · S. 6 & 20
^ abcdefgResult And Outlook · commemorative publication for Prof. Dr. Hans-Joachim Foerster on the occasion of leaving as director from active duty at Daimler-Benz AG · November 1982 · Pp. 7 & 20 · German: Ergebnis und Ausblick · Festschrift für Herrn Prof. Dr. Hans-Joachim Förster zum Ausscheiden als Direktor aus dem aktiven Dienst der Daimler-Benz AG · November 1982 · S. 7 & 20
^ abcde"MB Passenger Car Series 116" (PDF). · P. 10
^ abcHans-Joachim Foerster · Automatic Vehicle Transmissions P. 487 · German: Hans-Joachim Förster · Automatische Fahrzeuggetriebe · Berlin und Heidelberg 1991 · Print ISBN 978-3-642-84119-4 · eBook ISBN 978-3-642-84118-7 · S. 487
^ abcResult And Outlook · commemorative publication for Prof. Dr. Hans-Joachim Foerster on the occasion of leaving as director from active duty at Daimler-Benz AG · November 1982 · Pp. 9 & 22 · German: Ergebnis und Ausblick · Festschrift für Herrn Prof. Dr. Hans-Joachim Förster zum Ausscheiden als Direktor aus dem aktiven Dienst der Daimler-Benz AG · November 1982 · S. 9 & 22
^ abcHans-Joachim Foerster · Automatic Vehicle Transmissions P. 489 · German: Hans-Joachim Förster · Automatische Fahrzeuggetriebe · Berlin und Heidelberg 1991 · Print ISBN 978-3-642-84119-4 · eBook ISBN 978-3-642-84118-7 · S. 489
^"MB Passenger Car Series 116" (PDF). P. 11
^Only surpassed by the Mercedes-Benz 770, built from 1930 to 1943
^ abcHans-Joachim Foerster · Automatic Vehicle Transmissions · P. 452 · German: Hans-Joachim Förster · Automatische Fahrzeuggetriebe · Berlin und Heidelberg 1991 · Print ISBN 978-3-642-84119-4 · eBook ISBN 978-3-642-84118-7 · S. 452