Mercedes-Benz First Series Automatic Transmission - Wikipedia

Motor vehicle automatic transmission models Motor vehicle
Mercedes-Benz K4A 025

K4B 050 · K4C 025 · K4A 040 W3A 040 · W3B 050 · W4B 025

W4A 018 · W4B 035
K4A 025
Overview
ManufacturerDaimler AG
Production1961–1983
Body and chassis
Class3 and 4-speed longitudinal automatic transmission
Chronology
Successor 4G-Tronic

The Mercedes-Benz first series of automatic transmission was produced from 1961 to 1983 in 4- and 3-speed variants for Mercedes-Benz passenger cars. In addition, variants for commercial vehicles were offered until the mid-1990s.

This transmission was the first Mercedes-Benz automatic transmission in-house developing.[1] Before this, the company used semi-automatic systems like a vacuum-powered shifting for overdrive or the "Hydrak" hydraulic automatic clutch system. Alternatively, they bought automatic transmissions of other vendors, such as the Detroit gear 3-speed automatic transmission from BorgWarner for the 300 c and 300 d (not to be confused with the later 300 D and its successors).

The automatic transmissions are for engines with longitudinal layout for rear-wheel-drive layout passenger cars. The control of the fully automatic system is fully hydraulic and it uses electrical wire only for the kickdown solenoid valve and the neutral safety switch.

Physically, it can be recognized for its pan which uses 16 bolts.

Gear Ratios[a]
Model Type FirstDeli-very Gear Total Span Avg.Step Components Nomenclature
R 1 2 3 4 Nomi-nal Effec-tive Cen-ter Total perGear[b] Cou-pling GearsCount Ver-sion Maximum Input Torque
K4A 025 w/o 1961[2][3] −4.145 3.979 2.520 1.579 1.000 3.979 3.979 1.995 1.585 2 Gearsets3 Brakes3 Clutches 2.000 K[c] 4[b] A 25 kp⋅m (181 lb⋅ft)
K4B 050 w/o 1964[d] −4.145 3.979 2.459 1.579 1.000 3.979 3.979 1.995 1.585 3Gearsets3Brakes2Clutches 2.000 K[c] 4[b] B 50 kp⋅m (362 lb⋅ft)
K4C 025K4A 040W4B 025 722.2722.2722.1 1967[4]19691972[4] −5.478 3.983 2.386 1.461 1.000 3.983 3.983 1.996 1.585 K[c]K[c]W[e][5] 4[b] CAB 25 kp⋅m (181 lb⋅ft)40 kp⋅m (289 lb⋅ft)25 kp⋅m (181 lb⋅ft)
W4A 018[f] 720.1 1975 −5.499 4.006 2.391 1.463 1.000 4.006 4.006 2.001 1.588 W[e] 4[b] A 18 kp⋅m (130 lb⋅ft)
W4B 035[g] TBD 1975 −5.881 4.176 2.412 1.462 1.000 4.176 4.176 2.043 1.610 W[e] 4[b] B 35 kp⋅m (253 lb⋅ft)
W3A 040W3A 050W3A 050reinf. 720.0722.0722.0 197119731975 −1.836 2.306 1.461 1.000 2.306 1.836 1.519 1.519 2 Gearsets3 Brakes2 Clutches 2.333 W[e] 3[b] A 40 kp⋅m (289 lb⋅ft)50 kp⋅m (362 lb⋅ft)56 kp⋅m (405 lb⋅ft)
  1. ^ Differences in gear ratios have a measurable, direct impact on vehicle dynamics, performance, waste emissions as well as fuel mileage
  2. ^ a b c d e f g Forward gears only
  3. ^ a b c d Fluid coupling · German: Kupplung or Flüssigkeitskupplung
  4. ^ Unveiled in September 1963 at the International Motor Show in Frankfurt, it went into production in September 1964
  5. ^ a b c d Torque converter · German: Wandler or Drehmomentwandler
  6. ^ for light-duty trucks and vans up to 5,600 kg (12,350 lb) and off-road vehicles[4][6]
  7. ^ for medium-duty trucks up to 13,000 kg (28,660 lb)[7][8]

1961: K4A 025— 4-Speed Transmission With 2 Planetary Gearsets —

[edit]
K4A 025 transmission left hand side view
K4A 025 transmission right hand side view

Layout

[edit]

The K4A 025 is the first of the series, launched in April 1961 for the W 111 220 SEb, later replaced with the more reliable K4C 025 (type 722.2). It is a 4-speed unit and uses fluid coupling (also referred in some manuals as hydraulic/automatic clutch).

The design of the transmission results in poor shifting comfort, which does not meet Mercedes-Benz standards. This applies in particular to the change from 2nd to 3rd gear (and vice versa), which requires a group change, i.e. affects all shift elements.

Specifications

[edit]

For this first 4-speed model[a] 8 main components[b] are used. It is the only exemption which uses only 2 planetary gearsets for 4 speeds.

Gear Ratio Analysis
In-Depth AnalysisWith Assessment[c] Planetary Gearset:[d] Teeth Count Nomi-nal[e]Effec-tive[f] Cen-ter[g]
Simple Avg.[h]
ModelType VersionFirst Delivery S1[i]R1[j] S2[k]R2[l] BrakesClutches RatioSpan GearStep[m]
GearRatio R i R {\displaystyle {i_{R}}} 1 i 1 {\displaystyle {i_{1}}} 2 i 2 {\displaystyle {i_{2}}} 3 i 3 {\displaystyle {i_{3}}} 4 i 4 {\displaystyle {i_{4}}}
Step[m] − i R i 1 {\displaystyle -{\frac {i_{R}}{i_{1}}}} [n] i 1 i 1 {\displaystyle {\frac {i_{1}}{i_{1}}}} i 1 i 2 {\displaystyle {\frac {i_{1}}{i_{2}}}} [o] i 2 i 3 {\displaystyle {\frac {i_{2}}{i_{3}}}} i 3 i 4 {\displaystyle {\frac {i_{3}}{i_{4}}}}
Δ Step[p][q] i 1 i 2 : i 2 i 3 {\displaystyle {\tfrac {i_{1}}{i_{2}}}:{\tfrac {i_{2}}{i_{3}}}} i 2 i 3 : i 3 i 4 {\displaystyle {\tfrac {i_{2}}{i_{3}}}:{\tfrac {i_{3}}{i_{4}}}}
ShaftSpeed i 1 i R {\displaystyle {\frac {i_{1}}{i_{R}}}} i 1 i 1 {\displaystyle {\frac {i_{1}}{i_{1}}}} i 1 i 2 {\displaystyle {\frac {i_{1}}{i_{2}}}} i 1 i 3 {\displaystyle {\frac {i_{1}}{i_{3}}}} i 1 i 4 {\displaystyle {\frac {i_{1}}{i_{4}}}}
Δ ShaftSpeed[r] 0 − i 1 i R {\displaystyle 0-{\frac {i_{1}}{i_{R}}}} i 1 i 1 − 0 {\displaystyle {\tfrac {i_{1}}{i_{1}}}-0} i 1 i 2 − i 1 i 1 {\displaystyle {\tfrac {i_{1}}{i_{2}}}-{\tfrac {i_{1}}{i_{1}}}} i 1 i 3 − i 1 i 2 {\displaystyle {\tfrac {i_{1}}{i_{3}}}-{\tfrac {i_{1}}{i_{2}}}} i 1 i 4 − i 1 i 3 {\displaystyle {\tfrac {i_{1}}{i_{4}}}-{\tfrac {i_{1}}{i_{3}}}}
SpecificTorque[s] T 2 ; R T 1 ; R {\displaystyle {\tfrac {T_{2;R}}{T_{1;R}}}} [t] T 2 ; 1 T 1 ; 1 {\displaystyle {\tfrac {T_{2;1}}{T_{1;1}}}} [t] T 2 ; 2 T 1 ; 2 {\displaystyle {\tfrac {T_{2;2}}{T_{1;2}}}} [t] T 2 ; 3 T 1 ; 3 {\displaystyle {\tfrac {T_{2;3}}{T_{1;3}}}} [t] T 2 ; 4 T 1 ; 4 {\displaystyle {\tfrac {T_{2;4}}{T_{1;4}}}} [t]
Efficiency η n {\displaystyle \eta _{n}} [s] T 2 ; R T 1 ; R : i R {\displaystyle {\tfrac {T_{2;R}}{T_{1;R}}}:{i_{R}}} T 2 ; 1 T 1 ; 1 : i 1 {\displaystyle {\tfrac {T_{2;1}}{T_{1;1}}}:{i_{1}}} T 2 ; 2 T 1 ; 2 : i 2 {\displaystyle {\tfrac {T_{2;2}}{T_{1;2}}}:{i_{2}}} T 2 ; 3 T 1 ; 3 : i 3 {\displaystyle {\tfrac {T_{2;3}}{T_{1;3}}}:{i_{3}}} T 2 ; 4 T 1 ; 4 : i 4 {\displaystyle {\tfrac {T_{2;4}}{T_{1;4}}}:{i_{4}}}
K4A 025w/o 25 kp⋅m (245 N⋅m; 181 lb⋅ft)1961[2][3] 5076 4476 33 3.97893.9789 1.9947
1.5846[m]
GearRatio −4.1455 − 228 55 {\displaystyle -{\tfrac {228}{55}}} 3.9789 378 95 {\displaystyle {\tfrac {378}{95}}} 2.5200[m][q] 63 25 {\displaystyle {\tfrac {63}{25}}} 1.5789[m] 30 19 {\displaystyle {\tfrac {30}{19}}} 1.0000 1 1 {\displaystyle {\tfrac {1}{1}}}
Step 1.0418 1.0000 1.5789[m] 1.5960[m] 1.5789
Δ Step[p] 0.9893[q] 1.0108
Speed -0.9598 1.0000 1.5789 2.5200 3.9789
Δ Speed 0.9598 1.0000 0.5789 0.9411 1.4589
SpecificTorque[s] –4.0111–3.9447 3.90213.8640 2.48962.4744 1.56741.5616 1.0000
Efficiency η n {\displaystyle \eta _{n}} [s] 0.96760.9516 0.98070.9711 0.98790.9819 0.99270.9890 1.0000
Actuated Shift Elements
Brake B1[u]
Brake B2[v]
Brake B3[w]
Clutch K1[x]
Clutch K2[y]
Clutch K3[z]
Geometric Ratios
RatioR & 2 & 4Ordinary[aa]ElementaryNoted[ab] i R = − R 1 ( S 2 + R 2 ) S 1 S 2 {\displaystyle i_{R}=-{\frac {R_{1}(S_{2}+R_{2})}{S_{1}S_{2}}}} i 2 = S 1 + R 1 S 1 {\displaystyle i_{2}={\frac {S_{1}+R_{1}}{S_{1}}}} i 4 = 1 1 {\displaystyle i_{4}={\frac {1}{1}}}
i R = − R 1 S 1 ( 1 + R 2 S 2 ) {\displaystyle i_{R}=-{\tfrac {R_{1}}{S_{1}}}\left(1+{\tfrac {R_{2}}{S_{2}}}\right)} i 2 = 1 + R 1 S 1 {\displaystyle i_{2}=1+{\tfrac {R_{1}}{S_{1}}}}
Ratio1 & 3Ordinary[aa]ElementaryNoted[ab] i 1 = ( S 1 + R 1 ) ( S 2 + R 2 ) S 1 R 2 {\displaystyle i_{1}={\frac {(S_{1}+R_{1})(S_{2}+R_{2})}{S_{1}R_{2}}}} i 3 = S 2 + R 2 R 2 {\displaystyle i_{3}={\frac {S_{2}+R_{2}}{R_{2}}}}
i 1 = ( 1 + R 1 S 1 ) ( 1 + S 2 R 2 ) {\displaystyle i_{1}=\left(1+{\tfrac {R_{1}}{S_{1}}}\right)\left(1+{\tfrac {S_{2}}{R_{2}}}\right)} i 3 = 1 + S 2 R 2 {\displaystyle i_{3}=1+{\tfrac {S_{2}}{R_{2}}}}
Kinetic Ratios
SpecificTorque[s]R & 2 & 4 T 2 ; R T 1 ; R = − R 1 S 1 η 0 ( 1 + R 2 S 2 η 0 ) {\displaystyle {\tfrac {T_{2;R}}{T_{1;R}}}=-{\tfrac {R_{1}}{S_{1}}}\eta _{0}\left(1+{\tfrac {R_{2}}{S_{2}}}\eta _{0}\right)} T 2 ; 2 T 1 ; 2 = 1 + R 1 S 1 η 0 {\displaystyle {\tfrac {T_{2;2}}{T_{1;2}}}=1+{\tfrac {R_{1}}{S_{1}}}\eta _{0}} T 2 ; 4 T 1 ; 4 = 1 1 {\displaystyle {\tfrac {T_{2;4}}{T_{1;4}}}={\tfrac {1}{1}}}
SpecificTorque[s]1 & 3 T 2 ; 1 T 1 ; 1 = ( 1 + R 1 S 1 η 0 ) ( 1 + S 2 R 2 η 0 ) {\displaystyle {\tfrac {T_{2;1}}{T_{1;1}}}=\left(1+{\tfrac {R_{1}}{S_{1}}}\eta _{0}\right)\left(1+{\tfrac {S_{2}}{R_{2}}}\eta _{0}\right)} T 2 ; 3 T 1 ; 3 = 1 + S 2 R 2 η 0 {\displaystyle {\tfrac {T_{2;3}}{T_{1;3}}}=1+{\tfrac {S_{2}}{R_{2}}}\eta _{0}}
  1. ^ plus 1 reverse gear
  2. ^ 2 simple planetary gearsets, 3 brakes, 3 clutches
  3. ^ Revised 5 January 2026
  4. ^ Gearset Components: Nomenclature
    • S = {\displaystyle =} sun gear
    • R = {\displaystyle =} ring gear
    • C = {\displaystyle =} carrier or planetary gear carrier
    Layout
    • Input and output are on opposite sides
    • Planetary gearset 1 is on the input (turbine) side
    • Input shafts is S1 and, if actuated, C1
    • Output shaft is C2
  5. ^ Total Ratio Span (Total Gear/Transmission Ratio) Nominal
    • i 1 i n {\displaystyle {\frac {i_{1}}{i_{n}}}}
    • A wider span enables the
      • downspeeding when driving outside the city limits
      • increase the climbing ability
        • when driving over mountain passes or off-road
        • or when towing a trailer
  6. ^ Total Ratio Span (Total Gear/Transmission Ratio) Effective
    • m i n ( i 1 ; | i R | ) i n {\displaystyle {\frac {min(i_{1};|i_{R}|)}{i_{n}}}}
    • The span is only effective to the extent that
      • the reverse gear ratio
      • matches that of 1st gear
    • see also Standard R:1
  7. ^ Ratio Span's Center
    • ( i 1 i n ) 1 2 {\displaystyle (i_{1}i_{n})^{\frac {1}{2}}}
    • The center indicates the speed level of the transmission
    • Together with the final drive ratio
    • it gives the shaft speed level of the vehicle
  8. ^ Average Gear Step
    • ( i 1 i n ) 1 n − 1 {\displaystyle \left({\frac {i_{1}}{i_{n}}}\right)^{\frac {1}{n-1}}}
    • With decreasing step width
      • the gears connect better to each other
      • shifting comfort increases
  9. ^ Sun 1: sun gear of gearset 1
  10. ^ Ring 1: ring gear of gearset 1
  11. ^ Sun 2: sun gear of gearset 2
  12. ^ Ring 2: ring gear of gearset 2
  13. ^ a b c d e f g Standard 50:50— 50 % Is Above And 50 % Is Below The Average Gear Step —
    • With steadily decreasing gear steps (yellow highlighted line Step)
    • and a particularly large step from 1st to 2nd gear
      • the lower half of the gear steps (between the small gears; rounded down, here the first 1) is always larger
      • and the upper half of the gear steps (between the large gears; rounded up, here the last 2) is always smaller
    • than the average gear step (cell highlighted yellow two rows above on the far right)
    • lower half: smaller gear steps are a waste of possible ratios (red bold)
    • upper half: larger gear steps are unsatisfactory (red bold)
  14. ^ Standard R:1— Reverse And 1st Gear Have The Same Ratio —
    • The ideal reverse gear has the same transmission ratio as 1st gear
      • no impairment when maneuvering
      • especially when towing a trailer
      • a torque converter can only partially compensate for this deficiency
    • Plus 11.11 % minus 10 % compared to 1st gear is good
    • Plus 25 % minus 20 % is acceptable (red)
    • Above this is unsatisfactory (bold)
  15. ^ Standard 1:2— Gear Step 1st To 2nd Gear As Small As Possible —
    • With continuously decreasing gear steps (yellow marked line Step)
    • the largest gear step is the one from 1st to 2nd gear, which
      • for a good speed connection and
      • a smooth gear shift
    • must be as small as possible
      • A gear ratio of up to 1.6667:1 (5:3) is good
      • Up to 1.7500:1 (7:4) is acceptable (red)
      • Above is unsatisfactory (bold)
  16. ^ a b From large to small gears (from right to left)
  17. ^ a b c Standard STEP— From Large To Small Gears: Steady And Progressive Increase In Gear Steps —
    • Gear steps should
      • increase: Δ Step (first green highlighted line Δ Step) is always greater than 1
      • As progressive as possible: Δ Step is always greater than the previous step
    • Not progressively increasing is acceptable (red)
    • Not increasing is unsatisfactory (bold)
  18. ^ Standard SPEED— From Small To Large Gears: Steady Increase In Shaft Speed Difference —
    • Shaft speed differences should
      • increase: Δ Shaft Speed (second line marked in green Δ (Shaft) Speed) is always greater than the previous one
    • 1 difference smaller than the previous one is acceptable (red)
    • 2 consecutive ones are a waste of possible ratios (bold)
  19. ^ a b c d e f Specific Torque Ratio And Efficiency
    • The specific torque is the Ratio of
      • output torque T 2 ; n {\displaystyle T_{2;n}}
      • to input torque T 1 ; n {\displaystyle T_{1;n}}
      • with n = g e a r {\displaystyle n=gear}
    • The efficiency is calculated from the specific torque in relation to the transmission ratio
    • Power loss for single meshing gears is in the range of 1 % to 1.5 %
      • helical gear pairs, which are used to reduce noise in passenger cars, are in the upper part of the loss range
      • spur gear pairs, which are limited to commercial vehicles due to their poorer noise comfort, are in the lower part of the loss range
  20. ^ a b c d e Corridor for specific torque and efficiency
    • in planetary gearsets, the stationary gear ratio i 0 {\displaystyle i_{0}} is formed via the planetary gears and thus by two meshes
    • for reasons of simplification, the efficiency for both meshes together is commonly specified there
    • the efficiencies η 0 {\displaystyle \eta _{0}} specified here are based on assumed efficiencies for the stationary ratio i 0 {\displaystyle i_{0}}
      • of η 0 = 0.9800 {\displaystyle \eta _{0}=0.9800} (upper value)
      • and η 0 = 0.9700 {\displaystyle \eta _{0}=0.9700} (lower value)
    • for both interventions together
    • The corresponding efficiency for single-meshing gear pairs is η 0 1 2 {\displaystyle {\eta _{0}}^{\frac {1}{2}}}
      • at 0.9800 1 2 = 0.98995 {\displaystyle 0.9800^{\frac {1}{2}}=0.98995} (upper value)
      • and 0.9700 1 2 = 0.98489 {\displaystyle 0.9700^{\frac {1}{2}}=0.98489} (lower value)
  21. ^ Blocks R1
  22. ^ Blocks S2
  23. ^ Also BR (brake for reverse gear · German: Bremse für Rückwärtsgang) · blocks C1 and R2
  24. ^ Couples C1 and R2 with the input (turbine)
  25. ^ Couples C1 and R2 with S2
  26. ^ Also KR (clutch for reverse gear · German: Kupplung für Rückwärtsgang) · couples R1 with S2
  27. ^ a b Ordinary Noted
    • For direct determination of the ratio
  28. ^ a b Elementary Noted
    • Alternative representation for determining the transmission ratio
    • Contains only operands
      • With simple fractions of both central gears of a planetary gearset
      • Or with the value 1
    • As a basis
      • For reliable
      • And traceable
    • Determination of specific torque and efficiency

1964: K4B 050 And Follow-Up Products— 4-Speed Transmissions With 3 Planetary Gearsets —

[edit]

Layout

[edit]

The Mercedes-Benz 600, unveiled in September 1963 at the International Motor Show in Frankfurt, it went into production in September 1964 and was the first post-war "Grand Mercedes", powered by the Mercedes-Benz M100 engine. This made a gearbox for the highest demands of luxury vehicles necessary. The design of the gearbox in the range was out of the question from the outset. The introduction of the 600 was therefore taken as an opportunity to develop a completely new design for the automatic transmission.

Models

[edit]

1964: K4B 050

[edit]

The first model with this new layout was the K4B 050. Beside the new layout the number of pinions is doubled from 3 to 6 to handle the much higher torque of the big block V8 engine.

1967: K4C 025

[edit]

After the satisfactory experience with the new design, it was adopted in 1967 for the new core model K4C 025 (Type 722.2) of the first automatic transmission series from Mercedes-Benz. With the small block V8 engine M 116, the K4A 040 (Type 722.2) was launched as a reinforced version of the same design.

1969: K4A 040

[edit]

With the introduction of the V8 cylinder engines of the M 116 series with a displacement of 3.5 liters, the automatic transmission range was expanded to include the K4A 040 model, which is a reinforced version of the K4C 025 with the same gear ratios to accomodate the increased torque.

1972: W4B 025

[edit]

When the torque converter technique was fully established, the fluid coupling was replaced by a torque converter for the smaller engines, which leads to the W4B 025 (type 722.1).[5] Used in L4, L5 and L6 engines due to its lower torque output. In normal situations, it rests stationary in 2nd gear, but it will use 1st gear when the vehicle starts moving and throttle is applied[9] or if L position is selected in gear selector.

Variants For Commercial Cars

[edit]

The W4A 018 (type 720.1) was derived from the W4B 025 (type 722.1) for light-duty trucks and vans up to 5,600 kg (12,350 lb) and off-road vehicles,[4][6] the W4B 035 from the W4B 025 (type 722.1) and K4A 040 (type 722.2) for medium-duty trucks up to 13,000 kg (28,660 lb).[7][8] The main difference is the use of straight-cut planetary gearsets instead of helical-cut ones for better fuel efficiency at the price of lower noise comfort.

Specifications

[edit]

For this second 4-speed models[a] 8 main components[b] are used.[5]

Gear Ratio Analysis
In-Depth AnalysisWith Assessment[c] Planetary Gearset:[d] Teeth Count Nomi-nal[e]Effec-tive[f] Cen-ter[g]
Simpson Simple Avg.[h]
ModelType VersionFirst Delivery S1[i]R1[j] S2[k]R2[l] S3[m]R3[n] BrakesClutches RatioSpan GearStep[o]
GearRatio R i R {\displaystyle {i_{R}}} 1 i 1 {\displaystyle {i_{1}}} 2 i 2 {\displaystyle {i_{2}}} 3 i 3 {\displaystyle {i_{3}}} 4 i 4 {\displaystyle {i_{4}}}
Step[o] − i R i 1 {\displaystyle -{\frac {i_{R}}{i_{1}}}} [p] i 1 i 1 {\displaystyle {\frac {i_{1}}{i_{1}}}} i 1 i 2 {\displaystyle {\frac {i_{1}}{i_{2}}}} [q] i 2 i 3 {\displaystyle {\frac {i_{2}}{i_{3}}}} i 3 i 4 {\displaystyle {\frac {i_{3}}{i_{4}}}}
Δ Step[r][s] i 1 i 2 : i 2 i 3 {\displaystyle {\tfrac {i_{1}}{i_{2}}}:{\tfrac {i_{2}}{i_{3}}}} i 2 i 3 : i 3 i 4 {\displaystyle {\tfrac {i_{2}}{i_{3}}}:{\tfrac {i_{3}}{i_{4}}}}
ShaftSpeed i 1 i R {\displaystyle {\frac {i_{1}}{i_{R}}}} i 1 i 1 {\displaystyle {\frac {i_{1}}{i_{1}}}} i 1 i 2 {\displaystyle {\frac {i_{1}}{i_{2}}}} i 1 i 3 {\displaystyle {\frac {i_{1}}{i_{3}}}} i 1 i 4 {\displaystyle {\frac {i_{1}}{i_{4}}}}
Δ ShaftSpeed[t] 0 − i 1 i R {\displaystyle 0-{\tfrac {i_{1}}{i_{R}}}} i 1 i 1 − 0 {\displaystyle {\tfrac {i_{1}}{i_{1}}}-0} i 1 i 2 − i 1 i 1 {\displaystyle {\tfrac {i_{1}}{i_{2}}}-{\tfrac {i_{1}}{i_{1}}}} i 1 i 3 − i 1 i 2 {\displaystyle {\tfrac {i_{1}}{i_{3}}}-{\tfrac {i_{1}}{i_{2}}}} i 1 i 4 − i 1 i 3 {\displaystyle {\tfrac {i_{1}}{i_{4}}}-{\tfrac {i_{1}}{i_{3}}}}
SpecificTorque[u] T 2 ; R T 1 ; R {\displaystyle {\tfrac {T_{2;R}}{T_{1;R}}}} [v] T 2 ; 1 T 1 ; 1 {\displaystyle {\tfrac {T_{2;1}}{T_{1;1}}}} [v] T 2 ; 2 T 1 ; 2 {\displaystyle {\tfrac {T_{2;2}}{T_{1;2}}}} [v] T 2 ; 3 T 1 ; 3 {\displaystyle {\tfrac {T_{2;3}}{T_{1;3}}}} [v] T 2 ; 4 T 1 ; 4 {\displaystyle {\tfrac {T_{2;4}}{T_{1;4}}}} [v]
Efficiency η n {\displaystyle \eta _{n}} [u] T 2 ; R T 1 ; R : i R {\displaystyle {\tfrac {T_{2;R}}{T_{1;R}}}:{i_{R}}} T 2 ; 1 T 1 ; 1 : i 1 {\displaystyle {\tfrac {T_{2;1}}{T_{1;1}}}:{i_{1}}} T 2 ; 2 T 1 ; 2 : i 2 {\displaystyle {\tfrac {T_{2;2}}{T_{1;2}}}:{i_{2}}} T 2 ; 3 T 1 ; 3 : i 3 {\displaystyle {\tfrac {T_{2;3}}{T_{1;3}}}:{i_{3}}} T 2 ; 4 T 1 ; 4 : i 4 {\displaystyle {\tfrac {T_{2;4}}{T_{1;4}}}:{i_{4}}}
K4B 050w/o 51 kp⋅m (500 N⋅m; 369 lb⋅ft)1964 5076 4476 4476 32 3.97893.9789 1.9947
1.5846[o]
GearRatio −4.1455 − 228 55 {\displaystyle -{\tfrac {228}{55}}} 3.9789 378 95 {\displaystyle {\tfrac {378}{95}}} 2.4589 1 , 168 475 {\displaystyle {\tfrac {1,168}{475}}} 1.5789[s] 1.0000 1 1 {\displaystyle {\tfrac {1}{1}}}
Step 1.0418 1.0000 1.6182 1.5573 1.5789
Δ Step[r] 1.0391 0.9863[s]
Speed -0.9598 1.0000 1.6182 2.5200 3.9789
Δ Speed 0.9598 1.0000 0.6182 0.9018 1.4589
SpecificTorque[u] –4.0111–3.9447 3.90213.8640 2.41252.3896 1.56741.5616 1.0000
Efficiency η n {\displaystyle \eta _{n}} [u] 0.96760.9516 0.98070.9711 0.98110.9718 0.99270.9890 1.0000
K4C 025722.2 25 kp⋅m (245 N⋅m; 181 lb⋅ft)1967[4] 4476 4476 3576 32 3.98333.9833 1.9958
1.5852[o]
GearRatio −5.4779[p] − 2 , 109 385 {\displaystyle -{\tfrac {2,109}{385}}} 3.9833 1 , 665 418 {\displaystyle {\tfrac {1,665}{418}}} 2.3855[q][s] 5 , 439 2 , 280 {\displaystyle {\tfrac {5,439}{2,280}}} 1.4605[o] 111 76 {\displaystyle {\tfrac {111}{76}}} 1.0000 1 1 {\displaystyle {\tfrac {1}{1}}}
Step 1.3752[p] 1.0000 1.6698[q] 1.6333[o] 1.4605
Δ Step[r] 1.0223[s] 1.1183
Speed -0.7271 1.0000 1.6696 2.7273 3.9833
Δ Speed 0.7271 1.0000 0.6696 1.0575 1.2560
SpecificTorque[u] –5.2949–5.2044 3.90803.8706 2.34062.3184 1.45131.4467 1.0000
Efficiency η n {\displaystyle \eta _{n}} [u] 0.96660.9501 0.98110.9717 0.98120.9719 0.99370.9905 1.0000
K4A 040722.2 40 kp⋅m (392 N⋅m; 289 lb⋅ft)1969 4476 4476 3576 32 3.98333.9833 1.9958
1.5852[o]
Ratio −5.4779[p] 3.9833 2.3855[q][s] 1.4605[o] 1.0000
W4B 025722.1 25 kp⋅m (245 N⋅m; 181 lb⋅ft)1972[4] 4476 4476 3576 32 3.98333.9833 1.9958
1.5852[o]
Ratio −5.4779[p] 3.9833 2.3855[q][s] 1.4605[o] 1.0000
W4A 018[w]720.1 18 kp⋅m (177 N⋅m; 130 lb⋅ft)1975 4680 4680 3780 32 4.00604.0060 2.0015
1.5882[o]
GearRatio −5.4994[p] − 4 , 680 851 {\displaystyle -{\tfrac {4,680}{851}}} 4.0060 7 , 371 1840 {\displaystyle {\tfrac {7,371}{1840}}} 2.3911[q][s] 1 , 339 560 {\displaystyle {\tfrac {1,339}{560}}} 1.4625[o] 117 80 {\displaystyle {\tfrac {117}{80}}} 1.0000 1 1 {\displaystyle {\tfrac {1}{1}}}
Step 1.3728[p] 1.0000 1.6754[q] 1.6349[o] 1.4625
Δ Step[r] 1.0248[s] 1.1179
Speed -0.7284 1.0000 1.6754 2.7391 4.0060
Δ Speed 0.7284 1.0000 0.6754 1.0637 1.2668
SpecificTorque[u] –5.3157–5.2250 3.93013.8924 2.34592.3236 1.45331.4486 1.0000
Efficiency η n {\displaystyle \eta _{n}} [u] 0.96660.9501 0.98110.9716 0.98110.9718 0.99370.9905 1.0000
W4B 035[x]TBD 35 kp⋅m (343 N⋅m; 253 lb⋅ft)1975 4278 4278 3678 32 4.17584.1758 2.0435
1.6103[o]
GearRatio −5.8810[p] − 2 , 223 378 {\displaystyle -{\tfrac {2,223}{378}}} 4.1758 3 , 420 819 {\displaystyle {\tfrac {3,420}{819}}} 2.4115[q][s] 627 260 {\displaystyle {\tfrac {627}{260}}} 1.4615[o] 57 39 {\displaystyle {\tfrac {57}{39}}} 1.0000 1 1 {\displaystyle {\tfrac {1}{1}}}
Step 1.4083[p] 1.0000 1.7360[q] 1.6500[o] 1.4615
Δ Step[r] 1.0495[s] 1.1289
Speed -0.7101 1.0000 1.7316 2.8571 4.1758
Δ Speed 0.7101 1.0000 0.7316 1.1255 1.3187
SpecificTorque[u] –5.6845–5.5874 4.09554.0556 2.36532.3425 1.45231.4477 1.0000
Efficiency η n {\displaystyle \eta _{n}} [u] 0.96660.9501 0.98080.9712 0.98080.9714 0.99370.9905 1.0000
Actuated Shift Elements
Brake B1[y]
Brake B2[z]
Brake B3[aa]
Clutch K1[ab]
Clutch K2[ac]
Geometric Ratios
RatioR & 1Ordinary[ad]ElementaryNoted[ae] i R = − R 1 ( S 3 + R 3 ) S 1 S 3 {\displaystyle i_{R}=-{\frac {R_{1}(S_{3}+R_{3})}{S_{1}S_{3}}}} i 1 = ( S 1 + R 1 ) ( S 3 + R 3 ) S 1 R 3 {\displaystyle i_{1}={\frac {(S_{1}+R_{1})(S_{3}+R_{3})}{S_{1}R_{3}}}}
i R = − R 1 S 1 ( 1 + R 3 S 3 ) {\displaystyle i_{R}=-{\tfrac {R_{1}}{S_{1}}}\left(1+{\tfrac {R_{3}}{S_{3}}}\right)} i 1 = ( 1 + R 1 S 1 ) ( 1 + S 3 R 3 ) {\displaystyle i_{1}=\left(1+{\tfrac {R_{1}}{S_{1}}}\right)\left(1+{\tfrac {S_{3}}{R_{3}}}\right)}
Ratio2 & 3 & 4Ordinary[ad]ElementaryNoted[ae] i 2 = ( S 1 ( S 2 + R 2 ) + R 1 S 2 ) ( S 3 + R 3 ) S 1 ( S 2 + R 2 ) R 3 {\displaystyle i_{2}={\frac {(S_{1}(S_{2}+R_{2})+R_{1}S_{2})(S_{3}+R_{3})}{S_{1}(S_{2}+R_{2})R_{3}}}} i 3 = S 3 + R 3 R 3 {\displaystyle i_{3}={\frac {S_{3}+R_{3}}{R_{3}}}}
i 2 = ( 1 + R 1 S 1 1 + R 2 S 2 ) ( 1 + S 3 R 3 ) {\displaystyle i_{2}=\left(1+{\tfrac {\tfrac {R_{1}}{S_{1}}}{1+{\tfrac {R_{2}}{S_{2}}}}}\right)\left(1+{\tfrac {S_{3}}{R_{3}}}\right)} i 3 = 1 + S 3 R 3 {\displaystyle i_{3}=1+{\tfrac {S_{3}}{R_{3}}}} i 4 = 1 1 {\displaystyle i_{4}={\frac {1}{1}}}
Kinetic Ratios
SpecificTorque[u]R & 1 T 2 ; R T 1 ; R = − R 1 S 1 η 0 ( 1 + R 3 S 3 η 0 ) {\displaystyle {\tfrac {T_{2;R}}{T_{1;R}}}=-{\tfrac {R_{1}}{S_{1}}}\eta _{0}\left(1+{\tfrac {R_{3}}{S_{3}}}\eta _{0}\right)} T 2 ; 1 T 1 ; 1 = ( 1 + R 1 S 1 η 0 ) ( 1 + S 3 R 3 η 0 ) {\displaystyle {\tfrac {T_{2;1}}{T_{1;1}}}=\left(1+{\tfrac {R_{1}}{S_{1}}}\eta _{0}\right)\left(1+{\tfrac {S_{3}}{R_{3}}}\eta _{0}\right)}
SpecificTorque[u]2 & 3 & 4 T 2 ; 2 T 1 ; 2 = ( 1 + R 1 S 1 η 0 1 + R 2 S 2 ⋅ 1 η 0 ) ( 1 + S 3 R 3 η 0 ) {\displaystyle {\tfrac {T_{2;2}}{T_{1;2}}}=\left(1+{\tfrac {{\tfrac {R_{1}}{S_{1}}}\eta _{0}}{1+{\tfrac {R_{2}}{S_{2}}}\cdot {\tfrac {1}{\eta _{0}}}}}\right)\left(1+{\tfrac {S_{3}}{R_{3}}}\eta _{0}\right)} T 2 ; 3 T 1 ; 3 = 1 + S 3 R 3 η 0 {\displaystyle {\tfrac {T_{2;3}}{T_{1;3}}}=1+{\tfrac {S_{3}}{R_{3}}}\eta _{0}} T 2 ; 4 T 1 ; 4 = 1 1 {\displaystyle {\tfrac {T_{2;4}}{T_{1;4}}}={\frac {1}{1}}}
  1. ^ plus 1 reverse gear
  2. ^ 3 simple planetary gearsets, 3 brakes, 2 clutches
  3. ^ Revised 5 January 2026
  4. ^ Gearset Components: Nomenclature
    • S = {\displaystyle =} sun gear
    • R = {\displaystyle =} ring gear
    • C = {\displaystyle =} carrier or planetary gear carrier
    Layout
    • Input and output are on opposite sides
    • Planetary gearset 1 is on the input (turbine) side
    • Input (turbine) shaft is S1
    • Output shaft is C3
  5. ^ Total Ratio Span (Total Gear/Transmission Ratio) Nominal
    • i 1 i n {\displaystyle {\frac {i_{1}}{i_{n}}}}
    • A wider span enables the
      • downspeeding when driving outside the city limits
      • increase the climbing ability
        • when driving over mountain passes or off-road
        • or when towing a trailer
  6. ^ Total Ratio Span (Total Gear/Transmission Ratio) Effective
    • m i n ( i 1 ; | i R | ) i n {\displaystyle {\frac {min(i_{1};|i_{R}|)}{i_{n}}}}
    • The span is only effective to the extent that
      • the reverse gear ratio
      • matches that of 1st gear
    • see also Standard R:1
  7. ^ Ratio Span's Center
    • ( i 1 i n ) 1 2 {\displaystyle (i_{1}i_{n})^{\frac {1}{2}}}
    • The center indicates the speed level of the transmission
    • Together with the final drive ratio
    • it gives the shaft speed level of the vehicle
  8. ^ Average Gear Step
    • ( i 1 i n ) 1 n − 1 {\displaystyle \left({\frac {i_{1}}{i_{n}}}\right)^{\frac {1}{n-1}}}
    • With decreasing step width
      • the gears connect better to each other
      • shifting comfort increases
  9. ^ Sun 1: sun gear of gearset 1
  10. ^ Ring 1: ring gear of gearset 1
  11. ^ Sun 2: sun gear of gearset 2
  12. ^ Ring 2: ring gear of gearset 2
  13. ^ Sun 3: sun gear of gearset 3
  14. ^ Ring 3: ring gear of gearset 3
  15. ^ a b c d e f g h i j k l m n o p Standard 50:50— 50 % Is Above And 50 % Is Below The Average Gear Step —
    • With steadily decreasing gear steps (yellow highlighted line Step)
    • and a particularly large step from 1st to 2nd gear
      • the lower half of the gear steps (between the small gears; rounded down, here the first 1) is always larger
      • and the upper half of the gear steps (between the large gears; rounded up, here the last 2) is always smaller
    • than the average gear step (cell highlighted yellow two rows above on the far right)
    • lower half: smaller gear steps are a waste of possible ratios (red bold)
    • upper half: larger gear steps are unsatisfactory (red bold)
  16. ^ a b c d e f g h i Standard R:1— Reverse And 1st Gear Have The Same Ratio —
    • The ideal reverse gear has the same transmission ratio as 1st gear
      • no impairment when maneuvering
      • especially when towing a trailer
      • a torque converter can only partially compensate for this deficiency
    • Plus 11.11 % minus 10 % compared to 1st gear is good
    • Plus 25 % minus 20 % is acceptable (red)
    • Above this is unsatisfactory (bold)
  17. ^ a b c d e f g h i Standard 1:2— Gear Step 1st To 2nd Gear As Small As Possible —
    • With continuously decreasing gear steps (yellow marked line Step)
    • the largest gear step is the one from 1st to 2nd gear, which
      • for a good speed connection and
      • a smooth gear shift
    • must be as small as possible
      • A gear ratio of up to 1.6667:1 (5:3) is good
      • Up to 1.7500:1 (7:4) is acceptable (red)
      • Above is unsatisfactory (bold)
  18. ^ a b c d e From large to small gears (from right to left)
  19. ^ a b c d e f g h i j k Standard STEP— From Large To Small Gears: Steady And Progressive Increase In Gear Steps —
    • Gear steps should
      • increase: Δ Step (first green highlighted line Δ Step) is always greater than 1
      • As progressive as possible: Δ Step is always greater than the previous step
    • Not progressively increasing is acceptable (red)
    • Not increasing is unsatisfactory (bold)
  20. ^ Standard SPEED— From Small To Large Gears: Steady Increase In Shaft Speed Difference —
    • Shaft speed differences should
      • increase: Δ Shaft Speed (second line marked in green Δ (Shaft) Speed) is always greater than the previous one
    • 1 difference smaller than the previous one is acceptable (red)
    • 2 consecutive ones are a waste of possible ratios (bold)
  21. ^ a b c d e f g h i j k l Specific Torque Ratio And Efficiency
    • The specific torque is the Ratio of
      • output torque T 2 ; n {\displaystyle T_{2;n}}
      • to input torque T 1 ; n {\displaystyle T_{1;n}}
      • with n = g e a r {\displaystyle n=gear}
    • The efficiency is calculated from the specific torque in relation to the transmission ratio
    • Power loss for single meshing gears is in the range of 1 % to 1.5 %
      • helical gear pairs, which are used to reduce noise in passenger cars, are in the upper part of the loss range
      • spur gear pairs, which are limited to commercial vehicles due to their poorer noise comfort, are in the lower part of the loss range
  22. ^ a b c d e Corridor for specific torque and efficiency
    • in planetary gearsets, the stationary gear ratio i 0 {\displaystyle i_{0}} is formed via the planetary gears and thus by two meshes
    • for reasons of simplification, the efficiency for both meshes together is commonly specified there
    • the efficiencies η 0 {\displaystyle \eta _{0}} specified here are based on assumed efficiencies for the stationary ratio i 0 {\displaystyle i_{0}}
      • of η 0 = 0.9800 {\displaystyle \eta _{0}=0.9800} (upper value)
      • and η 0 = 0.9700 {\displaystyle \eta _{0}=0.9700} (lower value)
    • for both interventions together
    • The corresponding efficiency for single-meshing gear pairs is η 0 1 2 {\displaystyle {\eta _{0}}^{\frac {1}{2}}}
      • at 0.9800 1 2 = 0.98995 {\displaystyle 0.9800^{\frac {1}{2}}=0.98995} (upper value)
      • and 0.9700 1 2 = 0.98489 {\displaystyle 0.9700^{\frac {1}{2}}=0.98489} (lower value)
  23. ^ for light-duty trucks and vans up to 5,600 kg (12,350 lb) and off-road vehicles[4][6]
  24. ^ for medium-duty trucks up to 13,000 kg (28,660 lb)[7][8]
  25. ^ Blocks S2
  26. ^ Blocks S3
  27. ^ Also BR (brake for reverse gear · German: Bremse für Rückwärtsgang) · Blocks C1
  28. ^ Couples S2 with C2
  29. ^ Couples R1 with S3
  30. ^ a b Ordinary Noted
    • For direct determination of the ratio
  31. ^ a b Elementary Noted
    • Alternative representation for determining the transmission ratio
    • Contains only operands
      • With simple fractions of both central gears of a planetary gearset
      • Or with the value 1
    • As a basis
      • For reliable
      • And traceable
    • Determination of specific torque and efficiency

1971: W3A 040 And Follow-Up Products— 3-Speed Transmissions With 2 Planetary Gearsets —

[edit]

Layout

[edit]

When the torque converter technique was fully established, 3-speed units, the W3A 040 and W3B 050 (type 722.0) is combined with V8 engines, and it uses torque converter instead of fluid coupling.[1][5] The transmission saves 1 planetary gearset and uses the same housing as the 4-speed versions. The free space therefore is used to reinforce the shift elements (brakes and clutches) to handle the higher torque of the V8 engines.

First the W3A 040 was released for the all new M117 V8 engine of the W 108 and W 109 in 1971. The second in the series is the W3B 050, which was released initially for the W 116 450 SE/SEL in 1973. At that time the 4-speed transmission for the 350 SE/SEL was replaced by this 3-speed model. The reinforced W3B 050 reinforced (type 722.003) is the strongest of the series, able to handle the input of the enlarged version of the M 100, the biggest Mercedes-Benz engine in post-war history,[10] exclusively used in the W 116 450 SEL 6.9.

Specifications

[edit]

For the 3-speed models[a] 7 main components[b] are used, which shows economic equivalence with the direct competitor.

Gear Ratio Analysis
In-Depth AnalysisWith Assessment[c] PlanetaryGearset:[d] Count Nomi-nal[e]Effec-tive[f] Cen-ter[g]
Simpson Avg.[h]
ModelType VersionFirst Delivery S1[i]R1[j] S2[k]R2[l] BrakesClutches RatioSpan GearStep[m]
GearRatio R i R {\displaystyle {i_{R}}} 1 i 1 {\displaystyle {i_{1}}} 2 i 2 {\displaystyle {i_{2}}} 3 i 3 {\displaystyle {i_{3}}}
Step[m] − i R i 1 {\displaystyle -{\frac {i_{R}}{i_{1}}}} [n] i 1 i 1 {\displaystyle {\frac {i_{1}}{i_{1}}}} i 1 i 2 {\displaystyle {\frac {i_{1}}{i_{2}}}} [o] i 2 i 3 {\displaystyle {\frac {i_{2}}{i_{3}}}}
Δ Step[p][q] i 1 i 2 : i 2 i 3 {\displaystyle {\tfrac {i_{1}}{i_{2}}}:{\tfrac {i_{2}}{i_{3}}}}
ShaftSpeed i 1 i R {\displaystyle {\frac {i_{1}}{i_{R}}}} i 1 i 1 {\displaystyle {\frac {i_{1}}{i_{1}}}} i 1 i 2 {\displaystyle {\frac {i_{1}}{i_{2}}}} i 1 i 3 {\displaystyle {\frac {i_{1}}{i_{3}}}}
Δ ShaftSpeed[r] 0 − i 1 i R {\displaystyle 0-{\tfrac {i_{1}}{i_{R}}}} i 1 i 1 − 0 {\displaystyle {\tfrac {i_{1}}{i_{1}}}-0} i 1 i 2 − i 1 i 1 {\displaystyle {\tfrac {i_{1}}{i_{2}}}-{\tfrac {i_{1}}{i_{1}}}} i 1 i 3 − i 1 i 2 {\displaystyle {\tfrac {i_{1}}{i_{3}}}-{\tfrac {i_{1}}{i_{2}}}}
SpecificTorque[s] T 2 ; R T 1 ; R {\displaystyle {\frac {T_{2;R}}{T_{1;R}}}} [t] T 2 ; 1 T 1 ; 1 {\displaystyle {\frac {T_{2;1}}{T_{1;1}}}} [t] T 2 ; 2 T 1 ; 2 {\displaystyle {\frac {T_{2;2}}{T_{1;2}}}} [t] T 2 ; 3 T 1 ; 3 {\displaystyle {\frac {T_{2;3}}{T_{1;3}}}} [t]
Efficiency η n {\displaystyle \eta _{n}} [s] T 2 ; R T 1 ; R : i R {\displaystyle {\tfrac {T_{2;R}}{T_{1;R}}}:{i_{R}}} T 2 ; 1 T 1 ; 1 : i 1 {\displaystyle {\tfrac {T_{2;1}}{T_{1;1}}}:{i_{1}}} T 2 ; 2 T 1 ; 2 : i 2 {\displaystyle {\tfrac {T_{2;2}}{T_{1;2}}}:{i_{2}}} T 2 ; 3 T 1 ; 3 : i 3 {\displaystyle {\tfrac {T_{2;3}}{T_{1;3}}}:{i_{3}}}
W3A 040722.0 40 kp⋅m (392 N⋅m; 289 lb⋅ft)1971[11] 4476 3576 32 2.30611.8361[f][n] 1.5186
1.5186[m]
GearRatio −1.8361[n][f] − 1 , 221 665 {\displaystyle -{\tfrac {1,221}{665}}} 2.3061 1 , 665 722 {\displaystyle {\tfrac {1,665}{722}}} 1.4605 63 25 {\displaystyle {\tfrac {63}{25}}} 1.0000 1 1 {\displaystyle {\tfrac {1}{1}}}
Step 0.7962[n] 1.0000 1.5789 1.4605
Δ Step[p] 1.0811
Speed -1.2560 1.0000 1.5789 2.3061
Δ Speed 1.2560 1.0000 0.5789 0.9411
SpecificTorque[s] –1.7747–1.7444 2.27472.2592 1.45131.4467 1.0000
Efficiency η n {\displaystyle \eta _{n}} [s] 0.96660.9501 0.98640.9796 0.99370.9905 1.0000
W3A 050722.0 50 kp⋅m (490 N⋅m; 362 lb⋅ft)1973[11] 4476 3576 32 2.30611.8361[f][n] 1.5186
1.5186[m]
Ratio −1.8361[n][f] 2.3061 1.4605 1.0000
W3A 050reinf. 722.0 56 kp⋅m (549 N⋅m; 405 lb⋅ft)1975[11] 4476 3576 32 2.30611.8361[f][n] 1.5186
1.5186[m]
Ratio −1.8361[n][f] 2.3061 1.4605 1.0000
Actuated Shift Elements
Brake B1[u]
Brake B2[v]
Brake B3[w]
Clutch K1[x]
Clutch K2[y]
Geometric Ratios
RatioR & 2Ordinary[z]ElementaryNoted[aa] i R = − S 1 ( S 2 + R 2 ) R 1 S 2 {\displaystyle i_{R}=-{\frac {S_{1}(S_{2}+R_{2})}{R_{1}S_{2}}}} i 2 = S 2 + R 2 R 2 {\displaystyle i_{2}={\frac {S_{2}+R_{2}}{R_{2}}}}
i R = − S 1 R 1 ( 1 + R 2 S 2 ) {\displaystyle i_{R}=-{\tfrac {S_{1}}{R_{1}}}(1+{\tfrac {R_{2}}{S_{2}}})} i 2 = 1 + S 2 R 2 {\displaystyle i_{2}=1+{\tfrac {S_{2}}{R_{2}}}}
Ratio1 & 3Ordinary[z]ElementaryNoted[aa] i 1 = ( S 1 + R 1 ) ( S 2 + R 2 ) R 1 R 2 {\displaystyle i_{1}={\frac {(S_{1}+R_{1})(S_{2}+R_{2})}{R_{1}R_{2}}}} i 3 = 1 1 {\displaystyle i_{3}={\frac {1}{1}}}
i 1 = ( 1 + S 1 R 1 ) ( 1 + S 2 R 2 ) {\displaystyle i_{1}=\left(1+{\tfrac {S_{1}}{R_{1}}}\right)\left(1+{\tfrac {S_{2}}{R_{2}}}\right)} i 3 = 1 1 {\displaystyle i_{3}={\frac {1}{1}}}
Kinetic Ratios
SpecificTorque[s]R & 2 i R = − S 1 R 1 η 0 ( 1 + R 2 S 2 η 0 ) {\displaystyle i_{R}=-{\tfrac {S_{1}}{R_{1}}}\eta _{0}(1+{\tfrac {R_{2}}{S_{2}}}\eta _{0})} i 2 = 1 + S 2 R 2 η 0 {\displaystyle i_{2}=1+{\tfrac {S_{2}}{R_{2}}}\eta _{0}}
SpecificTorque[s]1 & 3 i 1 = ( 1 + S 1 R 1 η 0 ) ( 1 + S 2 R 2 η 0 ) {\displaystyle i_{1}=\left(1+{\tfrac {S_{1}}{R_{1}}}\eta _{0}\right)\left(1+{\tfrac {S_{2}}{R_{2}}}\eta _{0}\right)} i 3 = 1 1 {\displaystyle i_{3}={\frac {1}{1}}}
  1. ^ plus 1 reverse gear
  2. ^ 2 simple planetary gearsets,[5] 3 brakes, 2 clutches
  3. ^ Revised 5 January 2026
  4. ^ Gearset Components: Nomenclature
    • S = {\displaystyle =} sun gear
    • R = {\displaystyle =} ring gear
    • C = {\displaystyle =} carrier or planetary gear carrier
    Layout
    • Input and output are on opposite sides
    • Planetary gearset 1 is on the input (turbine) side
    • Input (turbine) shaft is R1
    • Output shaft is C2
  5. ^ Total Ratio Span (Total Gear/Transmission Ratio) Nominal
    • i 1 i n {\displaystyle {\frac {i_{1}}{i_{n}}}}
    • A wider span enables the
      • downspeeding when driving outside the city limits
      • increase the climbing ability
        • when driving over mountain passes or off-road
        • or when towing a trailer
  6. ^ a b c d e f g Total Ratio Span (Total Gear/Transmission Ratio) Effective
    • m i n ( i 1 ; | i R | ) i n {\displaystyle {\frac {min(i_{1};|i_{R}|)}{i_{n}}}}
    • The span is only effective to the extent that
      • the reverse gear ratio
      • matches that of 1st gear
    • see also Standard R:1
  7. ^ Ratio Span's Center
    • ( i 1 i n ) 1 2 {\displaystyle (i_{1}i_{n})^{\frac {1}{2}}}
    • The center indicates the speed level of the transmission
    • Together with the final drive ratio
    • it gives the shaft speed level of the vehicle
  8. ^ Average Gear Step
    • ( i 1 i n ) 1 n − 1 {\displaystyle \left({\frac {i_{1}}{i_{n}}}\right)^{\frac {1}{n-1}}}
    • With decreasing step width
      • the gears connect better to each other
      • shifting comfort increases
  9. ^ Sun 1: sun gear of gearset 1
  10. ^ Ring 1: ring gear of gearset 1
  11. ^ Sun 2: sun gear of gearset 2
  12. ^ Ring 2: ring gear of gearset 2
  13. ^ a b c d e Standard 50:50— 50 % Is Above And 50 % Is Below The Average Gear Step —
    • With steadily decreasing gear steps (yellow highlighted line Step)
    • and a particularly large step from 1st to 2nd gear
      • the lower half of the gear steps (between the small gears; rounded down, here the first 1) is always larger
      • and the upper half of the gear steps (between the large gears; rounded up, here the last 1) is always smaller
    • than the average gear step (cell highlighted yellow two rows above on the far right)
    • lower half: smaller gear steps are a waste of possible ratios (red bold)
    • upper half: larger gear steps are unsatisfactory (red bold)
  14. ^ a b c d e f g h Standard R:1— Reverse And 1st Gear Have The Same Ratio —
    • The ideal reverse gear has the same transmission ratio as 1st gear
      • no impairment when maneuvering
      • especially when towing a trailer
      • a torque converter can only partially compensate for this deficiency
    • Plus 11.11 % minus 10 % compared to 1st gear is good
    • Plus 25 % minus 20 % is acceptable (red)
    • Above this is unsatisfactory (bold)
  15. ^ Standard 1:2— Gear Step 1st To 2nd Gear As Small As Possible —
    • With continuously decreasing gear steps (yellow marked line Step)
    • the largest gear step is the one from 1st to 2nd gear, which
      • for a good speed connection and
      • a smooth gear shift
    • must be as small as possible
      • A gear ratio of up to 1.6667 : 1 (5 : 3) is good
      • Up to 1.7500 : 1 (7 : 4) is acceptable (red)
      • Above is unsatisfactory (bold)
  16. ^ a b From large to small gears (from right to left)
  17. ^ Standard STEP— From Large To Small Gears: Steady And Progressive Increase In Gear Steps —
    • Gear steps should
      • increase: Δ Step (first green highlighted line Δ Step) is always greater than 1
      • As progressive as possible: Δ Step is always greater than the previous step
    • Not progressively increasing is acceptable (red)
    • Not increasing is unsatisfactory (bold)
  18. ^ Standard SPEED— From Small To Large Gears: Steady Increase In Shaft Speed Difference —
    • Shaft speed differences should
      • increase: Δ Shaft Speed (second line marked in green Δ (Shaft) Speed) is always greater than the previous one
    • 1 difference smaller than the previous one is acceptable (red)
    • 2 consecutive ones are a waste of possible ratios (bold)
  19. ^ a b c d e f Specific Torque Ratio And Efficiency
    • The specific torque is the Ratio of
      • output torque T 2 ; n {\displaystyle T_{2;n}}
      • to input torque T 1 ; n {\displaystyle T_{1;n}}
      • with n = g e a r {\displaystyle n=gear}
    • The efficiency is calculated from the specific torque in relation to the transmission ratio
    • Power loss for single meshing gears is in the range of 1 % to 1.5 %
      • helical gear pairs, which are used to reduce noise in passenger cars, are in the upper part of the loss range
      • spur gear pairs, which are limited to commercial vehicles due to their poorer noise comfort, are in the lower part of the loss range
  20. ^ a b c d Corridor for specific torque and efficiency
    • in planetary gearsets, the stationary gear ratio i 0 {\displaystyle i_{0}} is formed via the planetary gears and thus by two meshes
    • for reasons of simplification, the efficiency for both meshes together is commonly specified there
    • the efficiencies η 0 {\displaystyle \eta _{0}} specified here are based on assumed efficiencies for the stationary ratio i 0 {\displaystyle i_{0}}
      • of η 0 = 0.9800 {\displaystyle \eta _{0}=0.9800} (upper value)
      • and η 0 = 0.9700 {\displaystyle \eta _{0}=0.9700} (lower value)
    • for both interventions together
    • The corresponding efficiency for single-meshing gear pairs is η 0 1 2 {\displaystyle {\eta _{0}}^{\frac {1}{2}}}
      • at 0.9800 1 2 = 0.98995 {\displaystyle 0.9800^{\frac {1}{2}}=0.98995} (upper value)
      • and 0.9700 1 2 = 0.98489 {\displaystyle 0.9700^{\frac {1}{2}}=0.98489} (lower value)
  21. ^ Blocks S1
  22. ^ Blocks S2
  23. ^ Blocks C1
  24. ^ Couples S1 with C1
  25. ^ Couples S1 with S2
  26. ^ a b Ordinary Noted
    • For direct determination of the ratio
  27. ^ a b Elementary Noted
    • Alternative representation for determining the transmission ratio
    • Contains only operands
      • With simple fractions of both central gears of a planetary gearset
      • Or with the value 1
    • As a basis
      • For reliable
      • And traceable
    • Determination of specific torque and efficiency

Applications

[edit]

K4A 025

[edit]
  • 1961–1965 (saloon) · 1961–1968 (coupé/convertible) W 111
  • 1961–1965 (saloon) · 1962–1968 (coupé/convertible) W 112
  • 1961–1968 W 110
  • 1963–1971 W 113
  • 1965–1968 W 108/W 109

K4B 050

[edit]
  • 1964–1981 600 (W 100)
  • 1968–1972 300 SEL 6.3 (W 109)

K4C 025

[edit]
  • 1968–1971 (coupé/convertible) W 111
  • 1968–1972 W 108/W 109
W 114/W 115
Chassis code Car model Engine code Transmissioncode
114.015 and 114.615 230.6 180.954 722.203
114.017 and 114.617 230.6 Lang
114.011 and 114.611 250 130.923 722.204
114.023 and 114.623 250 C
114.060 and 114.660 280 110.921 722.202
114.073 and 114.673 280 C
114.062 and 114.662 280 E 110.981 722.200
114.072 and 114.672 280 CE
115.015 and 115.615 200 115.923 722.205
115.010 220 115.920
115.115 and 115.715 200 D 615.913 722.206
115.110 and 115.710 220 D 615.912
115.112 220 D Lang

K4A 040

[edit] W 108/W 109
Chassis code Car model Engine code Transmissioncode Notes
109.057 300 SEL 3.5 3.5 L M 116 V8 722.201 worldwideexcept USA
108.067 280 SE 3.5
108.068 280 SEL 3.5
R 107/C 107
Chassis code Car model Engine code Transmissioncode
107.043 350 SL 116.982 (D-Jet)116.984 (K-Jet) 722.201
107.023 350 SLC

W3A 040

[edit] W 108/W 109
Chassis code Car model Engine code Transmissioncode Notes
109.056 300 SEL 4.5 4.5 L M 117 V8 722.000 USA only
108.057 280 SE 4.5
108.058 280 SEL 4.5
R 107/C 107
Chassis code Car model Engine code Transmissioncode Notes
107.043 350 SL 116.982 (D-Jet)116.984 (K-Jet) 722.002
107.023 350 SLC
107.044 450 SL 117.982 (D-Jet)117.985 (K-Jet) 722.004 USA andJapan only
107.024 450 SLC
W 116
Chassis code Car model Engine code Transmissioncode Notes
116.028 350 SE 116.983 (D-Jet)116.985 (K-Jet) 722.002
116.029 350 SEL
116.032 450 SE 117.983 (D-Jet)117.986 (K-Jet) 722.004 USA andJapan only
116.033 450 SEL

W3B 050

[edit] R 107/C 107
Chassis code Car model Engine code Transmissioncode Notes
107.044 450 SL 117.982 (D-Jet)117.985 (K-Jet) 722.001 worldwide exceptUSA and Japan
107.024 450 SLC
W 116
Chassis code Car model Engine code Transmissioncode Notes
116.032 450 SE 117.983 (D-Jet)117.986 (K-Jet) 722.001 worldwide exceptUSA and Japan
116.033 450 SEL
116.036 450 SEL 6.9 100.985 722.003 722.003W3B 050 reinforced[12]

W4B 025

[edit] R 107/C 107
Chassis code Car model Engine code Transmissioncode
107.042 280 SL 110.982110.986110.990 722.103722.112
107.022 280 SLC 110.982110.986
W 114/W 115
Chassis code Car model Engine code Transmissioncode
114.015 and 114.615 230.6 180.954 722.105
114.017 and 114.617 230.6 Lang
114.011 and 114.611 250 130.923 722.104
114.023 and 114.623 250 C
114.060 and 114.660 280 110.921 722.102
114.073 and 114.673 280 C
114.062 and 114.662 280 E 110.981 722.103
114.072 and 114.672 280 CE
115.015 and 115.615 200 115.923 722.106
115.017 230.4 115.951 722.110
115.115 and 115.715 200 D 615.913 722.107
115.110 and 115.710 220 D 615.912
115.112 220 D Lang
115.117 240 D 616.916 722.108
115.119 240 D Lang
115.114 240 D 3.0 617.910 722.109
W 116
Chassis code Car model Engine code Transmissioncode Notes
116.020 280 S 110.922 722.100722.102722.111
116.024 280 SE 110.983 (D-Jet)110.985 (K-Jet) 722.101722.103722.112
116.025 280 SEL
116.120 300 SD 617.950 722.120 USA only
W 123
Chassis code Car model Engine code Transmissioncode Notes
123.020 200 115.938115.939 722.115
123.220 200 102.920102.939 722.121
123.280 200 T
123.023 230 115.954 722.119
123.083 230 T
123.043 230 C
123.223 230 E 102.980 722.122
123.283 230 TE
123.243 230 CE
123.026 250 123.920123.921 722.113
123.086 250 T
123.028 250 Lang
123.030 280 110.923 722.111
123.050 280 C
123.033 280 E 110.984110.988 722.112
123.093 280 TE
123.053 280 CE
123.120 200 D 615.940 722.116
123.126 220 D 615.941
123.123 240 D 616.912 722.117
123.183 240 TD
123.125 240 D Lang
123.130 300 D 617.912 722.118
123.190 300 TD
123.132 300 D Lang
123.150 300 CD USA only

See also

[edit]
  • Cars portal
  • List of Daimler AG transmissions

References

[edit]
  1. ^ a b "50 years of automatic transmissions from Mercedes-Benz".
  2. ^ a b Johannes Looman · Gear Transmissions · Pp. 133 ff · German: Johannes Looman · Zahnradgetriebe · Berlin und Heidelberg 1970 · Print ISBN 978-3-540-04894-7 · S. 133 ff
  3. ^ a b Result And Outlook · commemorative publication for Prof. Dr. Hans-Joachim Foerster on the occasion of leaving as director from active duty at Daimler-Benz AG · November 1982 · Pp. 6 & 20 · German: Ergebnis und Ausblick · Festschrift für Herrn Prof. Dr. Hans Joachim Förster zum Ausscheiden als Direktor aus dem aktiven Dienst der Daimler-Benz AG · November 1982 · S. 6 & 20
  4. ^ a b c d e f g Result And Outlook · commemorative publication for Prof. Dr. Hans-Joachim Foerster on the occasion of leaving as director from active duty at Daimler-Benz AG · November 1982 · Pp. 7 & 20 · German: Ergebnis und Ausblick · Festschrift für Herrn Prof. Dr. Hans-Joachim Förster zum Ausscheiden als Direktor aus dem aktiven Dienst der Daimler-Benz AG · November 1982 · S. 7 & 20
  5. ^ a b c d e "MB Passenger Car Series 116" (PDF). · P. 10
  6. ^ a b c Hans-Joachim Foerster · Automatic Vehicle Transmissions P. 487 · German: Hans-Joachim Förster · Automatische Fahrzeuggetriebe · Berlin und Heidelberg 1991 · Print ISBN 978-3-642-84119-4 · eBook ISBN 978-3-642-84118-7 · S. 487
  7. ^ a b c Result And Outlook · commemorative publication for Prof. Dr. Hans-Joachim Foerster on the occasion of leaving as director from active duty at Daimler-Benz AG · November 1982 · Pp. 9 & 22 · German: Ergebnis und Ausblick · Festschrift für Herrn Prof. Dr. Hans-Joachim Förster zum Ausscheiden als Direktor aus dem aktiven Dienst der Daimler-Benz AG · November 1982 · S. 9 & 22
  8. ^ a b c Hans-Joachim Foerster · Automatic Vehicle Transmissions P. 489 · German: Hans-Joachim Förster · Automatische Fahrzeuggetriebe · Berlin und Heidelberg 1991 · Print ISBN 978-3-642-84119-4 · eBook ISBN 978-3-642-84118-7 · S. 489
  9. ^ "MB Passenger Car Series 116" (PDF). P. 11
  10. ^ Only surpassed by the Mercedes-Benz 770, built from 1930 to 1943
  11. ^ a b c Hans-Joachim Foerster · Automatic Vehicle Transmissions · P. 452 · German: Hans-Joachim Förster · Automatische Fahrzeuggetriebe · Berlin und Heidelberg 1991 · Print ISBN 978-3-642-84119-4 · eBook ISBN 978-3-642-84118-7 · S. 452
  12. ^ "MB AUS 1979" (PDF). · P. 57

Tag » Code 76 B Mercedes