oss — NumPy V1.23 Manual
Maybe your like
- User Guide
- API reference
- Building from source
- Development
- Release notes
- Learn
- NEPs
- GitHub
Section Navigation
- NumPy’s module structure
- Array objects
- Universal functions (ufunc)
- Routines and objects by topic
- Constants
- Array creation routines
- Array manipulation routines
- Bit-wise operations
- String functionality
- Datetime support functions
- Data type routines
- Mathematical functions with automatic domain
- Floating point error handling
- Exceptions and Warnings
- Discrete Fourier Transform
- Functional programming
- Input and output
- Indexing routines
- Linear algebra
- Logic functions
- Masked array operations
- Mathematical functions
- numpy.sin
- numpy.cos
- numpy.tan
- numpy.arcsin
- numpy.asin
- numpy.arccos
- numpy.acos
- numpy.arctan
- numpy.atan
- numpy.hypot
- numpy.arctan2
- numpy.atan2
- numpy.degrees
- numpy.radians
- numpy.unwrap
- numpy.deg2rad
- numpy.rad2deg
- numpy.sinh
- numpy.cosh
- numpy.tanh
- numpy.arcsinh
- numpy.asinh
- numpy.arccosh
- numpy.acosh
- numpy.arctanh
- numpy.atanh
- numpy.round
- numpy.around
- numpy.rint
- numpy.fix
- numpy.floor
- numpy.ceil
- numpy.trunc
- numpy.prod
- numpy.sum
- numpy.nanprod
- numpy.nansum
- numpy.cumulative_sum
- numpy.cumulative_prod
- numpy.cumprod
- numpy.cumsum
- numpy.nancumprod
- numpy.nancumsum
- numpy.diff
- numpy.ediff1d
- numpy.gradient
- numpy.cross
- numpy.trapezoid
- numpy.exp
- numpy.expm1
- numpy.exp2
- numpy.log
- numpy.log10
- numpy.log2
- numpy.log1p
- numpy.logaddexp
- numpy.logaddexp2
- numpy.i0
- numpy.sinc
- numpy.signbit
- numpy.copysign
- numpy.frexp
- numpy.ldexp
- numpy.nextafter
- numpy.spacing
- numpy.lcm
- numpy.gcd
- numpy.add
- numpy.reciprocal
- numpy.positive
- numpy.negative
- numpy.multiply
- numpy.divide
- numpy.power
- numpy.pow
- numpy.subtract
- numpy.true_divide
- numpy.floor_divide
- numpy.float_power
- numpy.fmod
- numpy.mod
- numpy.modf
- numpy.remainder
- numpy.divmod
- numpy.angle
- numpy.real
- numpy.imag
- numpy.conj
- numpy.conjugate
- numpy.maximum
- numpy.max
- numpy.amax
- numpy.fmax
- numpy.nanmax
- numpy.minimum
- numpy.min
- numpy.amin
- numpy.fmin
- numpy.nanmin
- numpy.convolve
- numpy.clip
- numpy.sqrt
- numpy.cbrt
- numpy.square
- numpy.absolute
- numpy.fabs
- numpy.sign
- numpy.heaviside
- numpy.nan_to_num
- numpy.real_if_close
- numpy.interp
- Miscellaneous routines
- Polynomials
- Random sampling
- Set routines
- Sorting, searching, and counting
- Statistics
- Test support
- Window functions
- Typing (numpy.typing)
- Packaging
- NumPy C-API
- Array API standard compatibility
- CPU/SIMD optimizations
- Thread Safety
- Global Configuration Options
- NumPy security
- Testing guidelines
- Status of numpy.distutils and migration advice
- numpy.distutils user guide
- NumPy and SWIG
- NumPy reference
- Routines and objects by topic
- Mathematical functions
- numpy.cross
Return the cross product of two (arrays of) vectors.
The cross product of a and b in \(R^3\) is a vector perpendicular to both a and b. If a and b are arrays of vectors, the vectors are defined by the last axis of a and b by default, and these axes can have dimensions 2 or 3. Where the dimension of either a or b is 2, the third component of the input vector is assumed to be zero and the cross product calculated accordingly. In cases where both input vectors have dimension 2, the z-component of the cross product is returned.
Parameters: aarray_likeComponents of the first vector(s).
barray_likeComponents of the second vector(s).
axisaint, optionalAxis of a that defines the vector(s). By default, the last axis.
axisbint, optionalAxis of b that defines the vector(s). By default, the last axis.
axiscint, optionalAxis of c containing the cross product vector(s). Ignored if both input vectors have dimension 2, as the return is scalar. By default, the last axis.
axisint, optionalIf defined, the axis of a, b and c that defines the vector(s) and cross product(s). Overrides axisa, axisb and axisc.
Returns: cndarrayVector cross product(s).
Raises: ValueErrorWhen the dimension of the vector(s) in a and/or b does not equal 2 or 3.
See also
innerInner product
outerOuter product.
linalg.crossAn Array API compatible variation of np.cross, which accepts (arrays of) 3-element vectors only.
ix_Construct index arrays.
Notes
Supports full broadcasting of the inputs.
Dimension-2 input arrays were deprecated in 2.0.0. If you do need this functionality, you can use:
defcross2d(x, y): return x[..., 0] * y[..., 1] - x[..., 1] * y[..., 0]Examples
Try it in your browser!Vector cross-product.
>>> importnumpyasnp >>> x = [1, 2, 3] >>> y = [4, 5, 6] >>> np.cross(x, y) array([-3, 6, -3])One vector with dimension 2.
>>> x = [1, 2] >>> y = [4, 5, 6] >>> np.cross(x, y) array([12, -6, -3])Equivalently:
>>> x = [1, 2, 0] >>> y = [4, 5, 6] >>> np.cross(x, y) array([12, -6, -3])Both vectors with dimension 2.
>>> x = [1,2] >>> y = [4,5] >>> np.cross(x, y) array(-3)Multiple vector cross-products. Note that the direction of the cross product vector is defined by the right-hand rule.
>>> x = np.array([[1,2,3], [4,5,6]]) >>> y = np.array([[4,5,6], [1,2,3]]) >>> np.cross(x, y) array([[-3, 6, -3], [ 3, -6, 3]])The orientation of c can be changed using the axisc keyword.
>>> np.cross(x, y, axisc=0) array([[-3, 3], [ 6, -6], [-3, 3]])Change the vector definition of x and y using axisa and axisb.
>>> x = np.array([[1,2,3], [4,5,6], [7, 8, 9]]) >>> y = np.array([[7, 8, 9], [4,5,6], [1,2,3]]) >>> np.cross(x, y) array([[ -6, 12, -6], [ 0, 0, 0], [ 6, -12, 6]]) >>> np.cross(x, y, axisa=0, axisb=0) array([[-24, 48, -24], [-30, 60, -30], [-36, 72, -36]]) Go BackOpen In Tab On this page- cross
Tag » Collinear Vectors Python
-
(Python) Script To Determine If (x, Y) Coordinates Are Colinear
-
Check If Two Vectors Are Collinear Or Not - GeeksforGeeks
-
Program To Check If Three Points Are Collinear - GeeksforGeeks
-
Checking If Two Vectors Are Colinear - Blender Artists Community
-
Find Clusters Of Collinear Points From A Given Set Of Data Points
-
Statistics In Python — Collinearity And Multicollinearity
-
A Python Library To Remove Collinearity | By Gianluca Malato
-
Python Program To Check If Three Points Are Collinear - BTech Geeks
-
Complete Guide To Vectors In Linear Algebra With Implementation ...
-
Vector-shortcuts · PyPI
-
Python Script To Determine If X Y Coordinates Are Colinear Getting ...
-
Types Of Vectors: Collinear And Equal Vectors, Videos ... - Toppr
-
Collinearity | Programming Praxis
-
Python: Test If Two Segments Are Roughly Collinear (on The Same Line)