Numpy.sert_almost_equal — NumPy V1.23 Manual
Maybe your like
- User Guide
- API reference
- Building from source
- Development
- Release notes
- Learn
- NEPs
- GitHub
Section Navigation
- NumPy’s module structure
- Array objects
- Universal functions (ufunc)
- Routines and objects by topic
- Constants
- Array creation routines
- Array manipulation routines
- Bit-wise operations
- String functionality
- Datetime support functions
- Data type routines
- Mathematical functions with automatic domain
- Floating point error handling
- Exceptions and Warnings
- Discrete Fourier Transform
- Functional programming
- Input and output
- Indexing routines
- Linear algebra
- Logic functions
- Masked array operations
- Mathematical functions
- Miscellaneous routines
- Polynomials
- Random sampling
- Set routines
- Sorting, searching, and counting
- Statistics
- Test support
- numpy.testing.assert_allclose
- numpy.testing.assert_array_almost_equal_nulp
- numpy.testing.assert_array_max_ulp
- numpy.testing.assert_array_equal
- numpy.testing.assert_array_less
- numpy.testing.assert_equal
- numpy.testing.assert_raises
- numpy.testing.assert_raises_regex
- numpy.testing.assert_warns
- numpy.testing.assert_no_warnings
- numpy.testing.assert_no_gc_cycles
- numpy.testing.assert_string_equal
- numpy.testing.assert_
- numpy.testing.assert_almost_equal
- numpy.testing.assert_approx_equal
- numpy.testing.assert_array_almost_equal
- numpy.testing.print_assert_equal
- numpy.testing.decorate_methods
- numpy.testing.clear_and_catch_warnings
- numpy.testing.measure
- numpy.testing.rundocs
- numpy.testing.suppress_warnings
- numpy.testing.overrides.allows_array_function_override
- numpy.testing.overrides.allows_array_ufunc_override
- numpy.testing.overrides.get_overridable_numpy_ufuncs
- numpy.testing.overrides.get_overridable_numpy_array_functions
- Testing guidelines
- Window functions
- Typing (numpy.typing)
- Packaging
- NumPy C-API
- Array API standard compatibility
- CPU/SIMD optimizations
- Thread Safety
- Global Configuration Options
- NumPy security
- Testing guidelines
- Status of numpy.distutils and migration advice
- numpy.distutils user guide
- NumPy and SWIG
- NumPy reference
- NumPy’s module structure
- Test support
- numpy.testing.assert_almost_equal
Raises an AssertionError if two items are not equal up to desired precision.
Note
It is recommended to use one of assert_allclose, assert_array_almost_equal_nulp or assert_array_max_ulp instead of this function for more consistent floating point comparisons.
The test verifies that the elements of actual and desired satisfy:
abs(desired-actual) < float64(1.5 * 10**(-decimal))That is a looser test than originally documented, but agrees with what the actual implementation in assert_array_almost_equal did up to rounding vagaries. An exception is raised at conflicting values. For ndarrays this delegates to assert_array_almost_equal
Parameters: actualarray_likeThe object to check.
desiredarray_likeThe expected object.
decimalint, optionalDesired precision, default is 7.
err_msgstr, optionalThe error message to be printed in case of failure.
verbosebool, optionalIf True, the conflicting values are appended to the error message.
Raises: AssertionErrorIf actual and desired are not equal up to specified precision.
See also
assert_allcloseCompare two array_like objects for equality with desired relative and/or absolute precision.
assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equalExamples
Try it in your browser! >>> fromnumpy.testingimport assert_almost_equal >>> assert_almost_equal(2.3333333333333, 2.33333334) >>> assert_almost_equal(2.3333333333333, 2.33333334, decimal=10) Traceback (most recent call last): ... AssertionError: Arrays are not almost equal to 10 decimals ACTUAL: 2.3333333333333 DESIRED: 2.33333334 >>> assert_almost_equal(np.array([1.0,2.3333333333333]), ... np.array([1.0,2.33333334]), decimal=9) Traceback (most recent call last): ... AssertionError: Arrays are not almost equal to 9 decimals Mismatched elements: 1 / 2 (50%) Mismatch at index: [1]: 2.3333333333333 (ACTUAL), 2.33333334 (DESIRED) Max absolute difference among violations: 6.66669964e-09 Max relative difference among violations: 2.85715698e-09 ACTUAL: array([1. , 2.333333333]) DESIRED: array([1. , 2.33333334]) Go BackOpen In Tab On this page- testing.assert_almost_equal
Tag » Approx Equal Python
-
Python - Function To Determine If Two Numbers Are Nearly Equal ...
-
PEP 485 – A Function For Testing Approximate Equality
-
How To Compare Floats For Almost-equality In Python - Adam Smith
-
Print Approximately Equal Symbol In Python
-
Approximate Equality - Rosetta Code
-
Approx-Equal Symbol In Python Plotting
-
The Right Way To Compare Floats In Python | By David Amos
-
Python Unittest - AssertAlmostEqual() Function - GeeksforGeeks
-
Numpy Array Approximately Equal Code Example - Code Grepper
-
Pytest Approximately Equal Scalars And Arrays - SciVision
-
Approximately Equal « Python Recipes « ActiveState Code
-
Pytest: Assert Almost Equal