One Sample T-Test Using SPSS Statistics

One-Sample T-Test using SPSS Statistics

Introduction

The one-sample t-test is used to determine whether a sample comes from a population with a specific mean. This population mean is not always known, but is sometimes hypothesized. For example, you want to show that a new teaching method for pupils struggling to learn English grammar can improve their grammar skills to the national average. Your sample would be pupils who received the new teaching method and your population mean would be the national average score. Alternately, you believe that doctors that work in Accident and Emergency (A & E) departments work 100 hour per week despite the dangers (e.g., tiredness) of working such long hours. You sample 1000 doctors in A & E departments and see if their hours differ from 100 hours.

This "quick start" guide shows you how to carry out a one-sample t-test using SPSS Statistics, as well as interpret and report the results from this test. However, before we introduce you to this procedure, you need to understand the different assumptions that your data must meet in order for a one-sample t-test to give you a valid result. We discuss these assumptions next.

SPSS Statistics

Assumptions of the one-sample t-test

When you choose to analyse your data using a one-sample t-test, part of the process involves checking to make sure that the data you want to analyse can actually be analysed using a one-sample t-test. You need to do this because it is only appropriate to use a one-sample t-test if your data "passes" four assumptions that are required for a one-sample t-test to give you a valid result. In practice, checking for these four assumptions just adds a little bit more time to your analysis, requiring you to click a few more buttons in SPSS Statistics when performing your analysis, as well as think a little bit more about your data, but it is not a difficult task.

Before we introduce you to these four assumptions, do not be surprised if, when analysing your own data using SPSS Statistics, one or more of these assumptions is violated (i.e., is not met). This is not uncommon when working with real-world data rather than textbook examples, which often only show you how to carry out a one-sample t-test when everything goes well! However, don’t worry. Even when your data fails certain assumptions, there is often a solution to overcome this. First, let’s take a look at these four assumptions:

  • Assumption #1: Your dependent variable should be measured at the interval or ratio level (i.e., continuous). Examples of variables that meet this criterion include revision time (measured in hours), intelligence (measured using IQ score), exam performance (measured from 0 to 100), weight (measured in kg), and so forth. You can learn more about interval and ratio variables in our article: Types of Variable.
  • Assumption #2: The data are independent (i.e., not correlated/related), which means that there is no relationship between the observations. This is more of a study design issue than something you can test for, but it is an important assumption of the one-sample t-test.
  • Assumption #3: There should be no significant outliers. Outliers are data points within your data that do not follow the usual pattern (e.g., in a study of 100 students' IQ scores, where the mean score was 108 with only a small variation between students, one student had a score of 156, which is very unusual, and may even put her in the top 1% of IQ scores globally). The problem with outliers is that they can have a negative effect on the one-sample t-test, reducing the accuracy of your results. Fortunately, when using SPSS Statistics to run a one-sample t-test on your data, you can easily detect possible outliers. In our enhanced one-sample t-test guide, we: (a) show you how to detect outliers using SPSS Statistics; and (b) discuss some of the options you have in order to deal with outliers.
  • Assumption #4: Your dependent variable should be approximately normally distributed. We talk about the one-sample t-test only requiring approximately normal data because it is quite "robust" to violations of normality, meaning that the assumption can be a little violated and still provide valid results. You can test for normality using the Shapiro-Wilk test of normality, which is easily tested for using SPSS Statistics. In addition to showing you how to do this in our enhanced one-sample t-test guide, we also explain what you can do if your data fails this assumption (i.e., if it fails it more than a little bit).

You can check assumptions #3 and #4 using SPSS Statistics. Before doing this, you should make sure that your data meets assumptions #1 and #2, although you don't need SPSS Statistics to do this. When moving on to assumptions #3 and #4, we suggest testing them in this order because it represents an order where, if a violation to the assumption is not correctable, you will no longer be able to use a one-sample t-test. Just remember that if you do not run the statistical tests on these assumptions correctly, the results you get when running a one-sample t-test might not be valid. This is why we dedicate a number of sections of our enhanced one-sample t-test guide to help you get this right. You can find out about our enhanced content on our Features: Overview page.

In the section, Procedure, we illustrate the SPSS Statistics procedure required to perform a one-sample t-test assuming that no assumptions have been violated. First, we set out the example we use to explain the one-sample t-test procedure in SPSS Statistics.

Tag » When To Run A One Sample T Test