Pandas.sk — Pandas 1.5.0 Documentation
Maybe your like
Site Navigation
- Getting started
- User Guide
- API reference
- Development
- Release notes
- GitHub
- Mastodon
Site Navigation
- Getting started
- User Guide
- API reference
- Development
- Release notes
- GitHub
- Mastodon
- Input/output
- General functions
- Series
- DataFrame
- pandas.DataFrame
- pandas.DataFrame.index
- pandas.DataFrame.columns
- pandas.DataFrame.dtypes
- pandas.DataFrame.info
- pandas.DataFrame.select_dtypes
- pandas.DataFrame.values
- pandas.DataFrame.axes
- pandas.DataFrame.ndim
- pandas.DataFrame.size
- pandas.DataFrame.shape
- pandas.DataFrame.memory_usage
- pandas.DataFrame.empty
- pandas.DataFrame.set_flags
- pandas.DataFrame.astype
- pandas.DataFrame.convert_dtypes
- pandas.DataFrame.infer_objects
- pandas.DataFrame.copy
- pandas.DataFrame.bool
- pandas.DataFrame.to_numpy
- pandas.DataFrame.head
- pandas.DataFrame.at
- pandas.DataFrame.iat
- pandas.DataFrame.loc
- pandas.DataFrame.iloc
- pandas.DataFrame.insert
- pandas.DataFrame.__iter__
- pandas.DataFrame.items
- pandas.DataFrame.keys
- pandas.DataFrame.iterrows
- pandas.DataFrame.itertuples
- pandas.DataFrame.pop
- pandas.DataFrame.tail
- pandas.DataFrame.xs
- pandas.DataFrame.get
- pandas.DataFrame.isin
- pandas.DataFrame.where
- pandas.DataFrame.mask
- pandas.DataFrame.query
- pandas.DataFrame.__add__
- pandas.DataFrame.add
- pandas.DataFrame.sub
- pandas.DataFrame.mul
- pandas.DataFrame.div
- pandas.DataFrame.truediv
- pandas.DataFrame.floordiv
- pandas.DataFrame.mod
- pandas.DataFrame.pow
- pandas.DataFrame.dot
- pandas.DataFrame.radd
- pandas.DataFrame.rsub
- pandas.DataFrame.rmul
- pandas.DataFrame.rdiv
- pandas.DataFrame.rtruediv
- pandas.DataFrame.rfloordiv
- pandas.DataFrame.rmod
- pandas.DataFrame.rpow
- pandas.DataFrame.lt
- pandas.DataFrame.gt
- pandas.DataFrame.le
- pandas.DataFrame.ge
- pandas.DataFrame.ne
- pandas.DataFrame.eq
- pandas.DataFrame.combine
- pandas.DataFrame.combine_first
- pandas.DataFrame.apply
- pandas.DataFrame.map
- pandas.DataFrame.applymap
- pandas.DataFrame.pipe
- pandas.DataFrame.agg
- pandas.DataFrame.aggregate
- pandas.DataFrame.transform
- pandas.DataFrame.groupby
- pandas.DataFrame.rolling
- pandas.DataFrame.expanding
- pandas.DataFrame.ewm
- pandas.DataFrame.abs
- pandas.DataFrame.all
- pandas.DataFrame.any
- pandas.DataFrame.clip
- pandas.DataFrame.corr
- pandas.DataFrame.corrwith
- pandas.DataFrame.count
- pandas.DataFrame.cov
- pandas.DataFrame.cummax
- pandas.DataFrame.cummin
- pandas.DataFrame.cumprod
- pandas.DataFrame.cumsum
- pandas.DataFrame.describe
- pandas.DataFrame.diff
- pandas.DataFrame.eval
- pandas.DataFrame.kurt
- pandas.DataFrame.kurtosis
- pandas.DataFrame.max
- pandas.DataFrame.mean
- pandas.DataFrame.median
- pandas.DataFrame.min
- pandas.DataFrame.mode
- pandas.DataFrame.pct_change
- pandas.DataFrame.prod
- pandas.DataFrame.product
- pandas.DataFrame.quantile
- pandas.DataFrame.rank
- pandas.DataFrame.round
- pandas.DataFrame.sem
- pandas.DataFrame.skew
- pandas.DataFrame.sum
- pandas.DataFrame.std
- pandas.DataFrame.var
- pandas.DataFrame.nunique
- pandas.DataFrame.value_counts
- pandas.DataFrame.add_prefix
- pandas.DataFrame.add_suffix
- pandas.DataFrame.align
- pandas.DataFrame.at_time
- pandas.DataFrame.between_time
- pandas.DataFrame.drop
- pandas.DataFrame.drop_duplicates
- pandas.DataFrame.duplicated
- pandas.DataFrame.equals
- pandas.DataFrame.filter
- pandas.DataFrame.first
- pandas.DataFrame.head
- pandas.DataFrame.idxmax
- pandas.DataFrame.idxmin
- pandas.DataFrame.last
- pandas.DataFrame.reindex
- pandas.DataFrame.reindex_like
- pandas.DataFrame.rename
- pandas.DataFrame.rename_axis
- pandas.DataFrame.reset_index
- pandas.DataFrame.sample
- pandas.DataFrame.set_axis
- pandas.DataFrame.set_index
- pandas.DataFrame.tail
- pandas.DataFrame.take
- pandas.DataFrame.truncate
- pandas.DataFrame.backfill
- pandas.DataFrame.bfill
- pandas.DataFrame.dropna
- pandas.DataFrame.ffill
- pandas.DataFrame.fillna
- pandas.DataFrame.interpolate
- pandas.DataFrame.isna
- pandas.DataFrame.isnull
- pandas.DataFrame.notna
- pandas.DataFrame.notnull
- pandas.DataFrame.pad
- pandas.DataFrame.replace
- pandas.DataFrame.droplevel
- pandas.DataFrame.pivot
- pandas.DataFrame.pivot_table
- pandas.DataFrame.reorder_levels
- pandas.DataFrame.sort_values
- pandas.DataFrame.sort_index
- pandas.DataFrame.nlargest
- pandas.DataFrame.nsmallest
- pandas.DataFrame.swaplevel
- pandas.DataFrame.stack
- pandas.DataFrame.unstack
- pandas.DataFrame.swapaxes
- pandas.DataFrame.melt
- pandas.DataFrame.explode
- pandas.DataFrame.squeeze
- pandas.DataFrame.to_xarray
- pandas.DataFrame.T
- pandas.DataFrame.transpose
- pandas.DataFrame.assign
- pandas.DataFrame.compare
- pandas.DataFrame.join
- pandas.DataFrame.merge
- pandas.DataFrame.update
- pandas.DataFrame.asfreq
- pandas.DataFrame.asof
- pandas.DataFrame.shift
- pandas.DataFrame.first_valid_index
- pandas.DataFrame.last_valid_index
- pandas.DataFrame.resample
- pandas.DataFrame.to_period
- pandas.DataFrame.to_timestamp
- pandas.DataFrame.tz_convert
- pandas.DataFrame.tz_localize
- pandas.Flags
- pandas.DataFrame.attrs
- pandas.DataFrame.plot
- pandas.DataFrame.plot.area
- pandas.DataFrame.plot.bar
- pandas.DataFrame.plot.barh
- pandas.DataFrame.plot.box
- pandas.DataFrame.plot.density
- pandas.DataFrame.plot.hexbin
- pandas.DataFrame.plot.hist
- pandas.DataFrame.plot.kde
- pandas.DataFrame.plot.line
- pandas.DataFrame.plot.pie
- pandas.DataFrame.plot.scatter
- pandas.DataFrame.boxplot
- pandas.DataFrame.hist
- pandas.DataFrame.sparse.density
- pandas.DataFrame.sparse.from_spmatrix
- pandas.DataFrame.sparse.to_coo
- pandas.DataFrame.sparse.to_dense
- pandas.DataFrame.from_dict
- pandas.DataFrame.from_records
- pandas.DataFrame.to_orc
- pandas.DataFrame.to_parquet
- pandas.DataFrame.to_pickle
- pandas.DataFrame.to_csv
- pandas.DataFrame.to_hdf
- pandas.DataFrame.to_sql
- pandas.DataFrame.to_dict
- pandas.DataFrame.to_excel
- pandas.DataFrame.to_json
- pandas.DataFrame.to_html
- pandas.DataFrame.to_feather
- pandas.DataFrame.to_latex
- pandas.DataFrame.to_stata
- pandas.DataFrame.to_gbq
- pandas.DataFrame.to_records
- pandas.DataFrame.to_string
- pandas.DataFrame.to_clipboard
- pandas.DataFrame.to_markdown
- pandas.DataFrame.style
- pandas.DataFrame.__dataframe__
- pandas arrays, scalars, and data types
- Index objects
- Date offsets
- Window
- GroupBy
- Resampling
- Style
- Plotting
- Options and settings
- Extensions
- Testing
- Missing values
- API reference
- DataFrame
- pandas.DataF...
Replace values where the condition is True.
Parameters: condbool Series/DataFrame, array-like, or callableWhere cond is False, keep the original value. Where True, replace with corresponding value from other. If cond is callable, it is computed on the Series/DataFrame and should return boolean Series/DataFrame or array. The callable must not change input Series/DataFrame (though pandas doesn’t check it).
otherscalar, Series/DataFrame, or callableEntries where cond is True are replaced with corresponding value from other. If other is callable, it is computed on the Series/DataFrame and should return scalar or Series/DataFrame. The callable must not change input Series/DataFrame (though pandas doesn’t check it). If not specified, entries will be filled with the corresponding NULL value (np.nan for numpy dtypes, pd.NA for extension dtypes).
inplacebool, default FalseWhether to perform the operation in place on the data.
axisint, default NoneAlignment axis if needed. For Series this parameter is unused and defaults to 0.
levelint, default NoneAlignment level if needed.
Returns: Same type as caller or None if inplace=True.See also
DataFrame.where()Return an object of same shape as self.
Notes
The mask method is an application of the if-then idiom. For each element in the calling DataFrame, if cond is False the element is used; otherwise the corresponding element from the DataFrame other is used. If the axis of other does not align with axis of cond Series/DataFrame, the misaligned index positions will be filled with True.
The signature for DataFrame.where() differs from numpy.where(). Roughly df1.where(m, df2) is equivalent to np.where(m, df1, df2).
For further details and examples see the mask documentation in indexing.
The dtype of the object takes precedence. The fill value is casted to the object’s dtype, if this can be done losslessly.
Examples
>>> s = pd.Series(range(5)) >>> s.where(s > 0) 0 NaN 1 1.0 2 2.0 3 3.0 4 4.0 dtype: float64 >>> s.mask(s > 0) 0 0.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64 >>> s = pd.Series(range(5)) >>> t = pd.Series([True, False]) >>> s.where(t, 99) 0 0 1 99 2 99 3 99 4 99 dtype: int64 >>> s.mask(t, 99) 0 99 1 1 2 99 3 99 4 99 dtype: int64 >>> s.where(s > 1, 10) 0 10 1 10 2 2 3 3 4 4 dtype: int64 >>> s.mask(s > 1, 10) 0 0 1 1 2 10 3 10 4 10 dtype: int64 >>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B']) >>> df A B 0 0 1 1 2 3 2 4 5 3 6 7 4 8 9 >>> m = df % 3 == 0 >>> df.where(m, -df) A B 0 0 -1 1 -2 3 2 -4 -5 3 6 -7 4 -8 9 >>> df.where(m, -df) == np.where(m, df, -df) A B 0 True True 1 True True 2 True True 3 True True 4 True True >>> df.where(m, -df) == df.mask(~m, -df) A B 0 True True 1 True True 2 True True 3 True True 4 True True On this page- DataFrame.mask()
Tag » How To Mask In Python
-
The Concept Of Masks In Python 2021 - Towards Data Science
-
Python | Pandas sk() - GeeksforGeeks
-
Comparisons, Masks, And Boolean Logic | Python Data Science ...
-
Pandas DataFrame Mask() Method - W3Schools
-
Image Processing Part 5: Arithmetic, Bitwise, And Masking
-
Apply A Mask | Python - DataCamp
-
The Module — NumPy V1.23 Manual
-
Image Masking With OpenCV - PyImageSearch
-
Mask An Array Where A Condition Is Met In Numpy - Tutorialspoint
-
How To Mask Out The Object From The Image? - Python - Stack Overflow
-
How To Properly Insert Mask Into Original Image? - Stack Overflow
-
Loading Images And Masks In The Right Order For Semantic ... - YouTube
-
Python: Array Masks - YouTube
-
Python:Logical Masks - PrattWiki