Parallel Planes -- From Wolfram MathWorld

Search Algebra Applied Mathematics Calculus and Analysis Discrete Mathematics Foundations of Mathematics Geometry History and Terminology Number Theory Probability and Statistics Recreational Mathematics Topology Alphabetical Index New in MathWorld
  • Geometry
  • Surfaces
  • Planes
Parallel Planes ParallelPlanes

Two planes that do not intersect are said to be parallel. Two planes specified in Hessian normal form are parallel iff |n_1^^·n_2^^|=1 or n_1^^xn_2^^=0 (Gellert et al. 1989, p. 541).

Two planes that are not parallel always intersect in a line.

See also

Hessian Normal Form, Parallel, Parallel Lines, Plane, Plane-Plane Intersection

Explore with Wolfram|Alpha

WolframAlpha

More things to try:

  • conic section
  • planes
  • apply image dilation to The Office image

References

Kern, W. F. and Bland, J. R. Solid Mensuration with Proofs, 2nd ed. New York: Wiley, p. 9, 1948.Gellert, W.; Gottwald, S.; Hellwich, M.; Kästner, H.; and Künstner, H. (Eds.). VNR Concise Encyclopedia of Mathematics, 2nd ed. New York: Van Nostrand Reinhold, 1989.

Referenced on Wolfram|Alpha

Parallel Planes

Cite this as:

Weisstein, Eric W. "Parallel Planes." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/ParallelPlanes.html

Subject classifications

  • Geometry
  • Surfaces
  • Planes
Created, developed and nurtured by Eric Weisstein at Wolfram Research

Tag » How To Determine If Two Planes Are Parallel