Parametric Equations: Eliminating Angle Parameters
Maybe your like
Toggle navigation - Pre-K
- Kindergarten
- 1st Grade
- 2nd Grade
- 3rd Grade
- 4th Grade
- 5th Grade
- Middle School
- High School
- Phonics
- Fun Games
-
- Math
- Math Games
- Math Worksheets
- Algebra
- Language Arts
- Science
- Social Studies
- Literature
- Languages
- Themes
- Quizzes
- Timelines
- Login
x = 5 sin θ, y = 3 cos θ, when −π≤θ≤− π 6
| Angle, θ | −π | − π 2 | − π 3 | − π 4 | − π 6 |
| x x 5 =sinθ | 0 | -5 | −5 3 2 | −5 2 2 | − 5 2 |
| y y 3 =cosθ | -3 | 0 | 3 2 | −3 2 2 | −3 3 2 |

TRIGONOMETRIC IDENTITIES:
sin 2 θ+ cos 2 θ=1
sec 2 θ− tan 2 θ=1
csc 2 θ− cot 2 θ=1
To eliminate the angle parameter of the two parametric equations above, rewrite the equations in terms of sin θ and cos θ and use trigonometric identity sin 2 θ+ cos 2 θ=1 .x=5sinθ→ x 5 =sinθ
y=3cosθ→ y 3 =cosθ
Substitute the results into the identity sin 2 θ+ cos 2 θ=1 .sin 2 θ+ cos 2 θ=1→ ( x 5 ) 2 + ( y 3 ) 2 =1
Then simplify the equation.x 2 5 2 + y 2 3 2 =1
This resulting rectangular equation represents an ellipse with center (0, 0), vertices (-5, 0) and (5, 0) and minor axis of length 2b = 2 · 3 = 6.
GUIDELINES FOR ELIMINATING THE ANGLE PARAMETER:
1. Rewrite the parametric equations in terms that can be substituted into one of the trigonometric identities.2. Substitute the resulting expression into the corresponding trigonometric identity.
sin 2 θ+ cos 2 θ=1
sec 2 θ− tan 2 θ=1
csc 2 θ− cot 2 θ=1
3. Simplify
Let's try a couple of examples. Example 1: Find the rectangular form of the following parametric equations by eliminating the angle and describe the graph. x=6+2cosθ y=5+2sinθ| Step 1: Rewrite the parametric equations in terms that can be substituted into a trigonometric identity. In this case solve in terms of cos θ and sin θ and use the identity sin2 θ + cos2 θ = 1. | 1st parametric equation x = 6 + 2cos θ Original x - 6 = 2cos θ Subtract 6 x−6 2 =cosθ Divide by 2 2nd parametric equation y=5+2sinθ Original y−5=2sinθ Subtract 5 y−5 2 =sinθ Divide by 2 |
| Step 2: Substitute the resulting expression into the appropriate trigonometric identity. sin 2 θ+ cos 2 θ=1 | sin 2 θ+ cos 2 θ=1 Trig. identity ( y−5 2 ) 2 + ( x−6 2 ) 2 =1 Substitute ( y−5 ) 2 4 + ( x−6 ) 2 4 =1 Square ( y−5 ) 2 + ( x−6 ) 2 =4 Multiply by 4 |
| Step 3: Describe the graph | The graph is a circle with center at (6, 5) and radius 2.
|
| Step 1: Rewrite the parametric equations in terms that can be substituted into a trigonometric identity. In this case solve in terms of sec θ and tan θand use the identity sec 2 θ− tan 2 θ=1 . | 1st parametric equation x=1+4secθ Original x−1=4secθ Subtract 1 x−1 4 =secθ Divide by 4 2nd parametric equation y=5tanθ Original y 5 =tanθ Divide by 5 |
| Step 2: Substitute the resulting expression into the appropriate trigonometric identity. sec 2 θ− tan 2 θ=1 | sec 2 θ− tan 2 θ=1 Trig. identity ( x−1 4 ) 2 + ( y 5 ) 2 =1 Substitute ( x−1 ) 2 4 2 + y 2 5 2 =1 Square |
| Step 3: Describe the graph | The graph is a hyperbola with center at (1, 0), vertices (1, 5) and (1, -5) and minor axis 2b = 2 · 4 = 8. |
| Related Links: Math algebra Finding Parametric Equations for a Graph Parametric Equations: Derivatives Pre Calculus |
To link to this Parametric Equations: Eliminating Angle Parameters page, copy the following code to your site:
Parametric Equations: Eliminating Angle ParametersTag » How To Eliminate The Parameter
-
Calculus II - Parametric Equations And Curves
-
Eliminating The Parameter From A Parametric Equation
-
Parameters And Parameter Elimination | CK-12 Foundation
-
Parametric Equations - How To Eliminate The Parameter - YouTube
-
Parametric Equations: Eliminating Parameters
-
Removing The Parameter In Parametric Equations (example 2) (video)
-
10.6: Parametric Equations - Mathematics LibreTexts
-
Eliminating Parameter From Parametric Equation [closed]
-
Calculus Examples | Parametric Equations And Polar Coordinates
-
17Calculus Parametric Equations - Eliminating The Parameter
-
X=4+2cost, And Y=5+2sint For 0≤t≤2π - Quora
-
Parametric Equations - Varsity Tutors
-
How Do I Eliminate The Parameter To Write A Parametric Equation As A ...
-
8.3 - Parametric Equations