Problem On Finding A Vector Perpendicular To A Triangle
Maybe your like
Problem on finding a vector perpendicular to a triangle
$\newcommand{\bfA}{\mathbf{A}}$ $\newcommand{\bfB}{\mathbf{B}}$ $\newcommand{\bfC}{\mathbf{C}}$ $\newcommand{\bfF}{\mathbf{F}}$ $\newcommand{\bfI}{\mathbf{I}}$ $\newcommand{\bfa}{\mathbf{a}}$ $\newcommand{\bfb}{\mathbf{b}}$ $\newcommand{\bfc}{\mathbf{c}}$ $\newcommand{\bfd}{\mathbf{d}}$ $\newcommand{\bfe}{\mathbf{e}}$ $\newcommand{\bfi}{\mathbf{i}}$ $\newcommand{\bfj}{\mathbf{j}}$ $\newcommand{\bfk}{\mathbf{k}}$ $\newcommand{\bfn}{\mathbf{n}}$ $\newcommand{\bfr}{\mathbf{r}}$ $\newcommand{\bfu}{\mathbf{u}}$ $\newcommand{\bfv}{\mathbf{v}}$ $\newcommand{\bfw}{\mathbf{w}}$ $\newcommand{\bfx}{\mathbf{x}}$ $\newcommand{\bfy}{\mathbf{y}}$ $\newcommand{\bfz}{\mathbf{z}}$
Consider the triangle in three-space given by $\langle a, 0, 0\rangle, \langle 0, b, 0 \rangle, \langle 0, 0, c \rangle.$ Find a vector that is perpendicular to the triangle and has length equal to the area of the triangle.
-
Solution
Recall that
- Cross product gives a perpendicular vector
- Vector-scalar multiplication scales the length of the vector
Hence a vector perpendicular to the triangle is $$\langle -a, b, 0 \rangle \times \langle -a, 0, c \rangle.$$
- Cross product definition
- Determinant of a 3x3 matrix
- Determinant of a 2x2 matrix
- Cross product and area of parallelograms
Hence the perpendicular vector whose length equals the area of the triangle is: $$\frac{\langle -a, b, 0 \rangle \times \langle -a, 0, c\rangle}{2} =\left \langle \frac{bc}{2}, \frac{ac}{2}, \frac{ab}{2} \right \rangle.$$
Related topics
- Multivariable calculus (147 problems)
- Vectors (55 problems)
- Vector subtraction (20 problems)
- Vector scalar multiplication (13 problems)
- $c \mathbf{x}$ is the vector obtained by multiplying the length of $\bfx$ by $c$. (6 problems)
- Determinants (23 problems)
- Determinant of a 3x3 matrix (15 problems)
- Determinant of a 2x2 matrix (16 problems)
- Cross product (17 problems)
- The cross product is defined by $\mathbf{x} \times \mathbf{y} = \begin{vmatrix}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix} $. (12 problems)
- The cross product of two vectors is a vector perpendicular to both.
(7 problems)
- The area of the parallelogram spanned by the vectors $\mathbf{x}$ and $\mathbf{y}$ is $| \mathbf{x} \times \mathbf{y}|$.
(3 problems)
- Vectors (55 problems)
For corrections, suggestions, or feedback, please email [email protected]
- Home
- About
- Login
- © 2014 Paul Hand
Tag » How To Find A Perpendicular Vector
-
How To Find A Vector That Is Perpendicular - Sciencing
-
Finding A Unit Vector Perpendicular To Another Vector
-
How Do I Find A Vector Perpendicular To Another Vector? - Quora
-
Find Perpendicular Vectors With Dot Product - YouTube
-
How To Find A Unit Vector Perpendicular To Another Vector 8i + 4j - 6k
-
Perpendicular Vector -- From Wolfram MathWorld
-
How To Find Perpendicular Vectors:Why,How,When,Where
-
Lesson Explainer: Parallel And Perpendicular Vectors In Space
-
Dot Products And Orthogonality
-
What Is A Formula To Get A Vector Perpendicular To Another Vector?
-
Precalculus : Determine If Two Vectors Are Parallel Or Perpendicular
-
How To Find Perpendicular Vectors In 2 Dimensions - WikiHow Life
-
[PDF] Vectors Perpendicular Unit Vectors
-
Find A Vector Which Is Perpendicular To Both Vector A And ... - Socratic