S.3.1 Hypothesis Testing (Critical Value Approach) - STAT ONLINE
Maybe your like
In our example concerning the mean grade point average, suppose we take a random sample of n = 15 students majoring in mathematics. Since n = 15, our test statistic t* has n - 1 = 14 degrees of freedom. Also, suppose we set our significance level α at 0.05 so that we have only a 5% chance of making a Type I error.
Right-Tailed
The critical value for conducting the right-tailed test H0 : μ = 3 versus HA : μ > 3 is the t-value, denoted t\(\alpha\), n - 1, such that the probability to the right of it is \(\alpha\). It can be shown using either statistical software or a t-table that the critical value t 0.05,14 is 1.7613. That is, we would reject the null hypothesis H0 : μ = 3 in favor of the alternative hypothesis HA : μ > 3 if the test statistic t* is greater than 1.7613. Visually, the rejection region is shaded red in the graph.
Left-Tailed
The critical value for conducting the left-tailed test H0 : μ = 3 versus HA : μ < 3 is the t-value, denoted -t(\(\alpha\), n - 1), such that the probability to the left of it is \(\alpha\). It can be shown using either statistical software or a t-table that the critical value -t0.05,14 is -1.7613. That is, we would reject the null hypothesis H0 : μ = 3 in favor of the alternative hypothesis HA : μ < 3 if the test statistic t* is less than -1.7613. Visually, the rejection region is shaded red in the graph.
Two-Tailed
There are two critical values for the two-tailed test H0 : μ = 3 versus HA : μ ≠ 3 — one for the left-tail denoted -t(\(\alpha\)/2, n - 1) and one for the right-tail denoted t(\(\alpha\)/2, n - 1). The value -t(\(\alpha\)/2, n - 1) is the t-value such that the probability to the left of it is \(\alpha\)/2, and the value t(\(\alpha\)/2, n - 1) is the t-value such that the probability to the right of it is \(\alpha\)/2. It can be shown using either statistical software or a t-table that the critical value -t0.025,14 is -2.1448 and the critical value t0.025,14 is 2.1448. That is, we would reject the null hypothesis H0 : μ = 3 in favor of the alternative hypothesis HA : μ ≠ 3 if the test statistic t* is less than -2.1448 or greater than 2.1448. Visually, the rejection region is shaded red in the graph.
Tag » How To Find Critical Value Statistics
-
How To Calculate Critical Value In Statistics
-
Find A Critical Value In Any Tail - Statistics How To
-
Critical Value Calculator - Omni Calculator
-
Critical Value: Definition, Finding & Calculator - Statistics By Jim
-
Critical Value - Formula, Definition, Examples, Types - Cuemath
-
How To Find A Critical Value For A Confidence Level - YouTube
-
[PDF] CALCULATING THE TEST STATISTIC AND CRITICAL VALUE - UAH
-
Example Finding Critical T Value (video) - Khan Academy
-
What Is A Critical Value? - Support - Minitab
-
1.3.6.7.2. Critical Values Of The Student's-t Distribution
-
7.1.3.1. Critical Values And P Values
-
Critical Value Calculator
-
How To Calculate Critical Values For Statistical Hypothesis Testing ...
-
Critical Region And Confidence Interval