Singular Matrix -- From Wolfram MathWorld

Search Algebra Applied Mathematics Calculus and Analysis Discrete Mathematics Foundations of Mathematics Geometry History and Terminology Number Theory Probability and Statistics Recreational Mathematics Topology Alphabetical Index New in MathWorld
  • Algebra
  • Linear Algebra
  • Matrices
  • Matrix Types
Singular Matrix

A square matrix that does not have a matrix inverse. A matrix is singular iff its determinant is 0. For example, there are 10 singular 2×2 (0,1)-matrices:

 [0 0; 0 0],[0 0; 0 1],[0 0; 1 0],[0 0; 1 1],[0 1; 0 0] [0 1; 0 1],[1 0; 0 0],[1 0; 1 0],[1 1; 0 0],[1 1; 1 1].

The following table gives the numbers of singular n×n matrices for certain matrix classes.

matrix typeOEIScounts for n=1, 2, ...
(-1,0,1)-matricesA0579811, 33, 7875, 15099201, ...
(-1,1)-matricesA0579820, 8, 320, 43264, ...
(0,1)-matricesA0467471, 10, 338, 42976, ...

See also

Determinant, Ill-Conditioned Matrix, Matrix Inverse, Nonsingular Matrix, Singular Value Decomposition

Explore with Wolfram|Alpha

WolframAlpha

More things to try:

  • null space calculator
  • {{1, 2, 3}, [1, -2, 1}, {0, 0, 0}}
  • null space {{-1,2},{2,-4}}

References

Ayres, F. Jr. Schaum's Outline of Theory and Problems of Matrices. New York: Schaum, p. 39, 1962.Faddeeva, V. N. Computational Methods of Linear Algebra. New York: Dover, p. 11, 1958.Golub, G. H. and Van Loan, C. F. Matrix Computations, 3rd ed. Baltimore, MD: Johns Hopkins, p. 51, 1996.Kahn, J.; Komlós, J.; and Szemeredi, E. "On the Probability that a Random +/-1 Matrix is Singular." J. Amer. Math. Soc. 8, 223-240, 1995.Komlós, J. "On the Determinant of (0,1)-Matrices." Studia Math. Hungarica 2, 7-21 1967.Marcus, M. and Minc, H. Introduction to Linear Algebra. New York: Dover, p. 70, 1988.Marcus, M. and Minc, H. A Survey of Matrix Theory and Matrix Inequalities. New York: Dover, p. 3, 1992.Sloane, N. J. A. Sequences A046747, A057981, and A057982 in "The On-Line Encyclopedia of Integer Sequences."

Referenced on Wolfram|Alpha

Singular Matrix

Cite this as:

Weisstein, Eric W. "Singular Matrix." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/SingularMatrix.html

Subject classifications

  • Algebra
  • Linear Algebra
  • Matrices
  • Matrix Types
Created, developed and nurtured by Eric Weisstein at Wolfram Research

Tag » What Is A Singular Matrix