[Solved] A Satellite Communication Link Has Uplink C/No Of 50 DB-Hz A
Maybe your like
Concept:
In satellite communication:
\(\frac{1}{{{\left( \frac{C}{N} \right)}_{total}}}=\frac{1}{{{\left( \frac{C}{N} \right)}_{uplink}}}~+~\frac{1}{~{{\left( \frac{C}{N} \right)}_{downlink}}}\)
Where C/N is the carrier to noise ratio;
\(\Rightarrow {{\left( \frac{C}{N} \right)}_{Total}}=\frac{{{\left( \frac{C}{N} \right)}_{U}}.{{\left( \frac{C}{N} \right)}_{D}}}{{{\left( \frac{C}{N} \right)}_{U}}+{{\left( \frac{C}{N} \right)}_{D}}}\)
Calculation:
Given:
\({{\left( \frac{C}{N} \right)}_{U}}=50~dB=10\log {{\left( \frac{C}{N} \right)}_{U}}\)
\({{\left( \frac{C}{N} \right)}_{U}}={{10}^{5}}\)
Similarly,
\({{\left( \frac{C}{N} \right)}_{D}}47dB=10\log {{\left( \frac{C}{N} \right)}_{D}}\)
\( {{\left( \frac{C}{N} \right)}_{D}}={{10}^{4.7}}\)
\(10\log {\left( {\frac{C}{{{N_0}}}} \right)_{OVERALL}} = 10\log \left( {\frac{{{{10}^{9.7}}}}{{{{10}^5} + {{10}^{4.7}}}}} \right) = 45.23\;dB\) Download Solution PDF Share on WhatsappTag » C/no Db-hz
-
What Exactly Does C/No (dBHz) Mean In U-Blox GPS Data?
-
Measuring GNSS Signal Strength
-
[PDF] Novdec10-Solutions.pdf - Inside GNSS
-
C/No (dB-Hz) Values For Various Signals | Download Table
-
The Carrier-to-noise Density Ratio (dB-Hz) Or C/N0 In Dataset 08...
-
Carrier-to-noise Ratio - Wikipedia
-
Weak Signal Acquisition Enhancement In Software GPS Receivers
-
What Is DBHz? - MullOverThing
-
[PDF] C/N0 Estimation For Modernized GNSS Signals: Theoretical Bounds ...
-
Satellite Communication | Calculation/Measurement Of Link Margin
-
[PDF] Power Measurement Basics - Noisecom
-
[PDF] HIGH GAIN ADVANCED GPS RECEIVER - DTIC
-
C/N0 Estimator Based On The Adaptive Strong Tracking Kalman ...