Steel | Composition, Properties, Types, Grades, & Facts | Britannica

Effects of carbon

In its pure form, iron is soft and generally not useful as an engineering material; the principal method of strengthening it and converting it into steel is by adding small amounts of carbon. In solid steel, carbon is generally found in two forms. Either it is in solid solution in austenite and ferrite or it is found as a carbide. The carbide form can be iron carbide (Fe3C, known as cementite), or it can be a carbide of an alloying element such as titanium. (On the other hand, in gray iron, carbon appears as flakes or clusters of graphite, owing to the presence of silicon, which suppresses carbide formation.)

Key People: Amelia zur Helle Thyssen August Thyssen Andrew Carnegie Henry Bessemer Sir William Siemens (Show more) Related Topics: What Is the Statue of Liberty Made Of? pearlite cast steel martensitic steel steel industry (Show more) On the Web: CORE - The Effect of Hyrdrogen on Steel (PDF) (Dec. 12, 2025) (Show more) See all related content cigar. cigars. Hand-rolled cigars. Cigar manufacturing. Tobacco roller. Tobacco leaves, Tobacco leaf Britannica Quiz Building Blocks of Everyday Objects
Iron-carbon equilibrium diagram.
Iron-carbon equilibrium diagram.(more)

The effects of carbon are best illustrated by an iron-carbon equilibrium diagram. The A-B-C line represents the liquidus points (i.e., the temperatures at which molten iron begins to solidify), and the H-J-E-C line represents the solidus points (at which solidification is completed). The A-B-C line indicates that solidification temperatures decrease as the carbon content of an iron melt is increased. (This explains why gray iron, which contains more than 2 percent carbon, is processed at much lower temperatures than steel.) Molten steel containing, for example, a carbon content of 0.77 percent (shown by the vertical dashed line in the figure) begins to solidify at about 1,475° C (2,660° F) and is completely solid at about 1,400° C (2,550° F). From this point down, the iron crystals are all in an austenitic—i.e., fcc—arrangement and contain all of the carbon in solid solution. Cooling further, a dramatic change takes place at about 727° C (1,341° F) when the austenite crystals transform into a fine lamellar structure consisting of alternating platelets of ferrite and iron carbide. This microstructure is called pearlite, and the change is called the eutectoidic transformation. Pearlite has a diamond pyramid hardness (DPH) of approximately 200 kilograms-force per square millimetre (285,000 pounds per square inch), compared with a DPH of 70 kilograms-force per square millimetre for pure iron. Cooling steel with a lower carbon content (e.g., 0.25 percent) results in a microstructure containing about 50 percent pearlite and 50 percent ferrite; this is softer than pearlite, with a DPH of about 130. Steel with more than 0.77 percent carbon—for instance, 1.05 percent—contains in its microstructure pearlite and cementite; it is harder than pearlite and may have a DPH of 250.

Tag » What Is Steel Used For