Subset Rows Using Column Values — Filter • Dplyr

Skip to content dplyr 1.2.0
  • Get started
  • Reference
  • Articles
    • Grouped data
    • Two-table verbs
    • Recoding columns and replacing values
    • dplyr <-> base R
    • Automation
    • Column-wise operations
    • Row-wise operations
    • Programming with dplyr
    • More articles...
  • News
    • Releases
    • Version 1.2.0
    • Version 1.1.0
    • Version 1.0.0
    • Version 0.8.3
    • Version 0.8.2
    • Version 0.8.1
    • Version 0.8.0
    • Version 0.7.5
    • Changelog
  • Ask AI ✨
Keep or drop rows that match a condition Source: R/filter.R filter.Rd

These functions are used to subset a data frame, applying the expressions in ... to determine which rows should be kept (for filter()) or dropped ( for filter_out()).

Multiple conditions can be supplied separated by a comma. These will be combined with the & operator. To combine comma separated conditions using | instead, wrap them in when_any().

Both filter() and filter_out() treat NA like FALSE. This subtle behavior can impact how you write your conditions when missing values are involved. See the section on Missing values for important details and examples.

Usage

filter(.data, ..., .by = NULL, .preserve = FALSE) filter_out(.data, ..., .by = NULL, .preserve = FALSE)

Arguments

.data

A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g. from dbplyr or dtplyr). See Methods, below, for more details.

...

<data-masking> Expressions that return a logical vector, defined in terms of the variables in .data. If multiple expressions are included, they are combined with the & operator. To combine expressions using | instead, wrap them in when_any(). Only rows for which all expressions evaluate to TRUE are kept (for filter()) or dropped (for filter_out()).

.by

<tidy-select> Optionally, a selection of columns to group by for just this operation, functioning as an alternative to group_by(). For details and examples, see ?dplyr_by.

.preserve

Relevant when the .data input is grouped. If .preserve = FALSE (the default), the grouping structure is recalculated based on the resulting data, otherwise the grouping is kept as is.

Value

An object of the same type as .data. The output has the following properties:

  • Rows are a subset of the input, but appear in the same order.

  • Columns are not modified.

  • The number of groups may be reduced (if .preserve is not TRUE).

  • Data frame attributes are preserved.

Missing values

Both filter() and filter_out() treat NA like FALSE. This results in the following behavior:

  • filter() drops both NA and FALSE.

  • filter_out() keeps both NA and FALSE.

This means that filter(data, <conditions>) + filter_out(data, <conditions>) captures every row within data exactly once.

The NA handling of these functions has been designed to match your intent. When your intent is to keep rows, use filter(). When your intent is to drop rows, use filter_out().

For example, if your goal with this cars data is to "drop rows where the class is suv", then you might write this in one of two ways:

cars <- tibble(class = c("suv", NA, "coupe")) cars #> # A tibble: 3 x 1 #> class #> <chr> #> 1 suv #> 2 <NA> #> 3 coupe cars |> filter(class != "suv") #> # A tibble: 1 x 1 #> class #> <chr> #> 1 coupe cars |> filter_out(class == "suv") #> # A tibble: 2 x 1 #> class #> <chr> #> 1 <NA> #> 2 coupe

Note how filter() drops the NA rows even though our goal was only to drop "suv" rows, but filter_out() matches our intuition.

To generate the correct result with filter(), you'd need to use:

cars |> filter(class != "suv" | is.na(class)) #> # A tibble: 2 x 1 #> class #> <chr> #> 1 <NA> #> 2 coupe

This quickly gets unwieldy when multiple conditions are involved.

In general, if you find yourself:

  • Using "negative" operators like != or !

  • Adding in NA handling like | is.na(col) or & !is.na(col)

then you should consider if swapping to the other filtering variant would make your conditions simpler.

Comparison to base subsetting

Base subsetting with [ doesn't treat NA like TRUE or FALSE. Instead, it generates a fully missing row, which is different from how both filter() and filter_out() work.

cars <- tibble(class = c("suv", NA, "coupe"), mpg = c(10, 12, 14)) cars #> # A tibble: 3 x 2 #> class mpg #> <chr> <dbl> #> 1 suv 10 #> 2 <NA> 12 #> 3 coupe 14 cars[cars$class == "suv",] #> # A tibble: 2 x 2 #> class mpg #> <chr> <dbl> #> 1 suv 10 #> 2 <NA> NA cars |> filter(class == "suv") #> # A tibble: 1 x 2 #> class mpg #> <chr> <dbl> #> 1 suv 10

Useful filter functions

There are many functions and operators that are useful when constructing the expressions used to filter the data:

  • ==, >, >= etc

  • &, |, !, xor()

  • is.na()

  • between(), near()

  • when_any(), when_all()

Grouped tibbles

Because filtering expressions are computed within groups, they may yield different results on grouped tibbles. This will be the case as soon as an aggregating, lagging, or ranking function is involved. Compare this ungrouped filtering:

starwars |> filter(mass > mean(mass, na.rm = TRUE))

With the grouped equivalent:

starwars |> filter(mass > mean(mass, na.rm = TRUE), .by = gender)

In the ungrouped version, filter() compares the value of mass in each row to the global average (taken over the whole data set), keeping only the rows with mass greater than this global average. In contrast, the grouped version calculates the average mass separately for each gender group, and keeps rows with mass greater than the relevant within-gender average.

Methods

This function is a generic, which means that packages can provide implementations (methods) for other classes. See the documentation of individual methods for extra arguments and differences in behaviour.

The following methods are currently available in loaded packages: dbplyr (tbl_lazy), dplyr (data.frame, ts) .

See also

Other single table verbs: arrange(), mutate(), reframe(), rename(), select(), slice(), summarise()

Examples

# Filtering for one criterion filter(starwars, species == "Human") #> # A tibble: 35 × 14 #> name height mass hair_color skin_color eye_color birth_year sex #> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> #> 1 Luke … 172 77 blond fair blue 19 male #> 2 Darth… 202 136 none white yellow 41.9 male #> 3 Leia … 150 49 brown light brown 19 fema… #> 4 Owen … 178 120 brown, gr… light blue 52 male #> 5 Beru … 165 75 brown light blue 47 fema… #> 6 Biggs… 183 84 black light brown 24 male #> 7 Obi-W… 182 77 auburn, w… fair blue-gray 57 male #> 8 Anaki… 188 84 blond fair blue 41.9 male #> 9 Wilhu… 180 NA auburn, g… fair blue 64 male #> 10 Han S… 180 80 brown fair brown 29 male #> # ℹ 25 more rows #> # ℹ 6 more variables: gender <chr>, homeworld <chr>, species <chr>, #> # films <list>, vehicles <list>, starships <list> # Filtering for multiple criteria within a single logical expression filter(starwars, hair_color == "none" & eye_color == "black") #> # A tibble: 9 × 14 #> name height mass hair_color skin_color eye_color birth_year sex #> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> #> 1 Nien N… 160 68 none grey black NA male #> 2 Gasgano 122 NA none white, bl… black NA male #> 3 Kit Fi… 196 87 none green black NA male #> 4 Plo Ko… 188 80 none orange black 22 male #> 5 Lama Su 229 88 none grey black NA male #> 6 Taun We 213 NA none grey black NA fema… #> 7 Shaak … 178 57 none red, blue… black NA fema… #> 8 Tion M… 206 80 none grey black NA male #> 9 BB8 NA NA none none black NA none #> # ℹ 6 more variables: gender <chr>, homeworld <chr>, species <chr>, #> # films <list>, vehicles <list>, starships <list> filter(starwars, hair_color == "none" | eye_color == "black") #> # A tibble: 39 × 14 #> name height mass hair_color skin_color eye_color birth_year sex #> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> #> 1 Darth… 202 136 none white yellow 41.9 male #> 2 Greedo 173 74 NA green black 44 male #> 3 IG-88 200 140 none metal red 15 none #> 4 Bossk 190 113 none green red 53 male #> 5 Lobot 175 79 none light blue 37 male #> 6 Ackbar 180 83 none brown mot… orange 41 male #> 7 Nien … 160 68 none grey black NA male #> 8 Nute … 191 90 none mottled g… red NA male #> 9 Jar J… 196 66 none orange orange 52 male #> 10 Roos … 224 82 none grey orange NA male #> # ℹ 29 more rows #> # ℹ 6 more variables: gender <chr>, homeworld <chr>, species <chr>, #> # films <list>, vehicles <list>, starships <list> # Multiple comma separated expressions are combined using `&` starwars |> filter(hair_color == "none", eye_color == "black") #> # A tibble: 9 × 14 #> name height mass hair_color skin_color eye_color birth_year sex #> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> #> 1 Nien N… 160 68 none grey black NA male #> 2 Gasgano 122 NA none white, bl… black NA male #> 3 Kit Fi… 196 87 none green black NA male #> 4 Plo Ko… 188 80 none orange black 22 male #> 5 Lama Su 229 88 none grey black NA male #> 6 Taun We 213 NA none grey black NA fema… #> 7 Shaak … 178 57 none red, blue… black NA fema… #> 8 Tion M… 206 80 none grey black NA male #> 9 BB8 NA NA none none black NA none #> # ℹ 6 more variables: gender <chr>, homeworld <chr>, species <chr>, #> # films <list>, vehicles <list>, starships <list> # To combine comma separated expressions using `|` instead, use `when_any()` starwars |> filter(when_any(hair_color == "none", eye_color == "black")) #> # A tibble: 39 × 14 #> name height mass hair_color skin_color eye_color birth_year sex #> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> #> 1 Darth… 202 136 none white yellow 41.9 male #> 2 Greedo 173 74 NA green black 44 male #> 3 IG-88 200 140 none metal red 15 none #> 4 Bossk 190 113 none green red 53 male #> 5 Lobot 175 79 none light blue 37 male #> 6 Ackbar 180 83 none brown mot… orange 41 male #> 7 Nien … 160 68 none grey black NA male #> 8 Nute … 191 90 none mottled g… red NA male #> 9 Jar J… 196 66 none orange orange 52 male #> 10 Roos … 224 82 none grey orange NA male #> # ℹ 29 more rows #> # ℹ 6 more variables: gender <chr>, homeworld <chr>, species <chr>, #> # films <list>, vehicles <list>, starships <list> # Filtering out to drop rows filter_out(starwars, hair_color == "none") #> # A tibble: 49 × 14 #> name height mass hair_color skin_color eye_color birth_year sex #> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> #> 1 Luke … 172 77 blond fair blue 19 male #> 2 C-3PO 167 75 NA gold yellow 112 none #> 3 R2-D2 96 32 NA white, bl… red 33 none #> 4 Leia … 150 49 brown light brown 19 fema… #> 5 Owen … 178 120 brown, gr… light blue 52 male #> 6 Beru … 165 75 brown light blue 47 fema… #> 7 R5-D4 97 32 NA white, red red NA none #> 8 Biggs… 183 84 black light brown 24 male #> 9 Obi-W… 182 77 auburn, w… fair blue-gray 57 male #> 10 Anaki… 188 84 blond fair blue 41.9 male #> # ℹ 39 more rows #> # ℹ 6 more variables: gender <chr>, homeworld <chr>, species <chr>, #> # films <list>, vehicles <list>, starships <list> # When filtering out, it can be useful to first interactively filter for the # rows you want to drop, just to double check that you've written the # conditions correctly. Then, just change `filter()` to `filter_out()`. filter(starwars, mass > 1000, eye_color == "orange") #> # A tibble: 1 × 14 #> name height mass hair_color skin_color eye_color birth_year sex #> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> #> 1 Jabba … 175 1358 NA green-tan… orange 600 herm… #> # ℹ 6 more variables: gender <chr>, homeworld <chr>, species <chr>, #> # films <list>, vehicles <list>, starships <list> filter_out(starwars, mass > 1000, eye_color == "orange") #> # A tibble: 86 × 14 #> name height mass hair_color skin_color eye_color birth_year sex #> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> #> 1 Luke … 172 77 blond fair blue 19 male #> 2 C-3PO 167 75 NA gold yellow 112 none #> 3 R2-D2 96 32 NA white, bl… red 33 none #> 4 Darth… 202 136 none white yellow 41.9 male #> 5 Leia … 150 49 brown light brown 19 fema… #> 6 Owen … 178 120 brown, gr… light blue 52 male #> 7 Beru … 165 75 brown light blue 47 fema… #> 8 R5-D4 97 32 NA white, red red NA none #> 9 Biggs… 183 84 black light brown 24 male #> 10 Obi-W… 182 77 auburn, w… fair blue-gray 57 male #> # ℹ 76 more rows #> # ℹ 6 more variables: gender <chr>, homeworld <chr>, species <chr>, #> # films <list>, vehicles <list>, starships <list> # The filtering operation may yield different results on grouped # tibbles because the expressions are computed within groups. # # The following keeps rows where `mass` is greater than the # global average: starwars |> filter(mass > mean(mass, na.rm = TRUE)) #> # A tibble: 10 × 14 #> name height mass hair_color skin_color eye_color birth_year sex #> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> #> 1 Darth… 202 136 none white yellow 41.9 male #> 2 Owen … 178 120 brown, gr… light blue 52 male #> 3 Chewb… 228 112 brown unknown blue 200 male #> 4 Jabba… 175 1358 NA green-tan… orange 600 herm… #> 5 Jek T… 180 110 brown fair blue NA NA #> 6 IG-88 200 140 none metal red 15 none #> 7 Bossk 190 113 none green red 53 male #> 8 Dexte… 198 102 none brown yellow NA male #> 9 Griev… 216 159 none brown, wh… green, y… NA male #> 10 Tarff… 234 136 brown brown blue NA male #> # ℹ 6 more variables: gender <chr>, homeworld <chr>, species <chr>, #> # films <list>, vehicles <list>, starships <list> # Whereas this keeps rows with `mass` greater than the per `gender` # average: starwars |> filter(mass > mean(mass, na.rm = TRUE), .by = gender) #> # A tibble: 15 × 14 #> name height mass hair_color skin_color eye_color birth_year sex #> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> #> 1 Dart… 202 136 none white yellow 41.9 male #> 2 Owen… 178 120 brown, gr… light blue 52 male #> 3 Beru… 165 75 brown light blue 47 fema… #> 4 Chew… 228 112 brown unknown blue 200 male #> 5 Jabb… 175 1358 NA green-tan… orange 600 herm… #> 6 Jek … 180 110 brown fair blue NA NA #> 7 IG-88 200 140 none metal red 15 none #> 8 Bossk 190 113 none green red 53 male #> 9 Ayla… 178 55 none blue hazel 48 fema… #> 10 Greg… 185 85 black dark brown NA NA #> 11 Lumi… 170 56.2 black yellow blue 58 fema… #> 12 Zam … 168 55 blonde fair, gre… yellow NA fema… #> 13 Shaa… 178 57 none red, blue… black NA fema… #> 14 Grie… 216 159 none brown, wh… green, y… NA male #> 15 Tarf… 234 136 brown brown blue NA male #> # ℹ 6 more variables: gender <chr>, homeworld <chr>, species <chr>, #> # films <list>, vehicles <list>, starships <list> # If you find yourself trying to use a `filter()` to drop rows, then # you should consider if switching to `filter_out()` can simplify your # conditions. For example, to drop blond individuals, you might try: starwars |> filter(hair_color != "blond") #> # A tibble: 79 × 14 #> name height mass hair_color skin_color eye_color birth_year sex #> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> #> 1 Darth… 202 136 none white yellow 41.9 male #> 2 Leia … 150 49 brown light brown 19 fema… #> 3 Owen … 178 120 brown, gr… light blue 52 male #> 4 Beru … 165 75 brown light blue 47 fema… #> 5 Biggs… 183 84 black light brown 24 male #> 6 Obi-W… 182 77 auburn, w… fair blue-gray 57 male #> 7 Wilhu… 180 NA auburn, g… fair blue 64 male #> 8 Chewb… 228 112 brown unknown blue 200 male #> 9 Han S… 180 80 brown fair brown 29 male #> 10 Wedge… 170 77 brown fair hazel 21 male #> # ℹ 69 more rows #> # ℹ 6 more variables: gender <chr>, homeworld <chr>, species <chr>, #> # films <list>, vehicles <list>, starships <list> # But this also drops rows with an `NA` hair color! To retain those: starwars |> filter(hair_color != "blond" | is.na(hair_color)) #> # A tibble: 84 × 14 #> name height mass hair_color skin_color eye_color birth_year sex #> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> #> 1 C-3PO 167 75 NA gold yellow 112 none #> 2 R2-D2 96 32 NA white, bl… red 33 none #> 3 Darth… 202 136 none white yellow 41.9 male #> 4 Leia … 150 49 brown light brown 19 fema… #> 5 Owen … 178 120 brown, gr… light blue 52 male #> 6 Beru … 165 75 brown light blue 47 fema… #> 7 R5-D4 97 32 NA white, red red NA none #> 8 Biggs… 183 84 black light brown 24 male #> 9 Obi-W… 182 77 auburn, w… fair blue-gray 57 male #> 10 Wilhu… 180 NA auburn, g… fair blue 64 male #> # ℹ 74 more rows #> # ℹ 6 more variables: gender <chr>, homeworld <chr>, species <chr>, #> # films <list>, vehicles <list>, starships <list> # But explicit `NA` handling like this can quickly get unwieldy, especially # with multiple conditions. Since your intent was to specify rows to drop # rather than rows to keep, use `filter_out()`. This also removes the need # for any explicit `NA` handling. starwars |> filter_out(hair_color == "blond") #> # A tibble: 84 × 14 #> name height mass hair_color skin_color eye_color birth_year sex #> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> #> 1 C-3PO 167 75 NA gold yellow 112 none #> 2 R2-D2 96 32 NA white, bl… red 33 none #> 3 Darth… 202 136 none white yellow 41.9 male #> 4 Leia … 150 49 brown light brown 19 fema… #> 5 Owen … 178 120 brown, gr… light blue 52 male #> 6 Beru … 165 75 brown light blue 47 fema… #> 7 R5-D4 97 32 NA white, red red NA none #> 8 Biggs… 183 84 black light brown 24 male #> 9 Obi-W… 182 77 auburn, w… fair blue-gray 57 male #> 10 Wilhu… 180 NA auburn, g… fair blue 64 male #> # ℹ 74 more rows #> # ℹ 6 more variables: gender <chr>, homeworld <chr>, species <chr>, #> # films <list>, vehicles <list>, starships <list> # To refer to column names that are stored as strings, use the `.data` # pronoun: vars <- c("mass", "height") cond <- c(80, 150) starwars |> filter( .data[[vars[[1]]]] > cond[[1]], .data[[vars[[2]]]] > cond[[2]] ) #> # A tibble: 21 × 14 #> name height mass hair_color skin_color eye_color birth_year sex #> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> #> 1 Darth… 202 136 none white yellow 41.9 male #> 2 Owen … 178 120 brown, gr… light blue 52 male #> 3 Biggs… 183 84 black light brown 24 male #> 4 Anaki… 188 84 blond fair blue 41.9 male #> 5 Chewb… 228 112 brown unknown blue 200 male #> 6 Jabba… 175 1358 NA green-tan… orange 600 herm… #> 7 Jek T… 180 110 brown fair blue NA NA #> 8 IG-88 200 140 none metal red 15 none #> 9 Bossk 190 113 none green red 53 male #> 10 Ackbar 180 83 none brown mot… orange 41 male #> # ℹ 11 more rows #> # ℹ 6 more variables: gender <chr>, homeworld <chr>, species <chr>, #> # films <list>, vehicles <list>, starships <list> # Learn more in ?rlang::args_data_masking

On this page

Tag » How To Subset Data In R