Symmetric Matrix Definition - Math Insight

  • Skip to navigation (Press Enter)
  • Skip to main content (Press Enter)
  • Home
  • Threads
  • Index
  • About
Page Navigation
  • Top
  • Contact us
To create your own interactive content like this, check out our new web site doenet.org!

Symmetric matrix definition

A matrix $A$ is symmetric if it is equal to its transpose, i.e., $A=A^T$. A matrix $A$ is symmetric if and only if swapping indices doesn't change its components, i.e., $a_{ij} = a_{ji}$.

The matrix \begin{gather*} A=\left[ \begin{array}{cccc} 1 & 2 & 3 & 4\\ 2 & 5 & 6 & 7\\ 3 & 6 & 8 & 9\\ 4 & 7 & 9 & 10 \end{array} ] \end{gather*} is symmetric while the matrix \begin{gather*} B=\left[ \begin{array}{cccc} 1 & 2 & 3 & 4\\ 12 & 5 & 6 & 7\\ 3 & 6 & 8 & 9\\ 4 & 7 & 9 & 10 \end{array} ] \end{gather*} is not symmetric as $2=a_{12} \ne a_{21}=12$.

Tag » What Makes A Matrix Symmetric