The tables contain the prime factorization of the natural numbers from 1 to 1000.
When n is a prime number, the prime factorization is just n itself, written in bold below.
The number 1 is called a unit. It has no prime factors and is neither prime nor composite.
 | This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: "Table of prime factors" – news · newspapers · books · scholar · JSTOR (September 2025) (Learn how and when to remove this message) |
Properties
[edit] Many properties of a natural number n {\displaystyle n}
can be seen or directly computed from the prime factorization of n {\displaystyle n}
.
- The multiplicity of a prime factor p {\displaystyle p}
of n {\displaystyle n}
is the largest exponent m {\displaystyle m}
for which p m {\displaystyle p^{m}}
divides n {\displaystyle n}
. The tables show the multiplicity for each prime factor. If no exponent is written then the multiplicity is 1 {\displaystyle 1}
(since p = p 1 {\displaystyle p=p^{1}}
). The multiplicity of a prime which does not divide n {\displaystyle n}
may be called 0 {\displaystyle 0}
or may be considered undefined. - ω ( n ) {\displaystyle \omega (n)}
and Ω ( n ) {\displaystyle \Omega (n)}
, the prime omega functions, count the number of prime factors of a natural number n {\displaystyle n}
. - ω ( n ) {\displaystyle \omega (n)}
(little omega) is the number of distinct prime factors of n {\displaystyle n}
. - Ω ( n ) {\displaystyle \Omega (n)}
(big omega) is the number of prime factors of n {\displaystyle n}
counted with multiplicity (so it is the sum of all prime factor multiplicities).
- A prime number has Ω ( n ) = ω ( n ) = 1 {\displaystyle \Omega (n)=\omega (n)=1}
. The first: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 (sequence A000040 in the OEIS). There are many special types of prime numbers. - A composite number has Ω ( n ) ≥ ω ( n ) > 1 {\displaystyle \Omega (n)\geq \omega (n)>1}
. The first: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21 (sequence A002808 in the OEIS). All numbers above 1 are either prime or composite. 1 is neither. - A semiprime has Ω ( n ) = 2 {\displaystyle \Omega (n)=2}
(so it is composite). The first: 4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34 (sequence A001358 in the OEIS). - A k {\displaystyle k}
-almost prime (for a natural number k {\displaystyle k}
) has Ω ( n ) = k {\displaystyle \Omega (n)=k}
(so it is composite if k > 1 {\displaystyle k>1}
). - An even number has the prime factor 2. The first: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 (sequence A005843 in the OEIS).
- An odd number does not have the prime factor 2. The first: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23 (sequence A005408 in the OEIS). All integers are either even or odd.
- A square has even multiplicity for all prime factors (it is of the form a 2 {\displaystyle a^{2}}
for some a {\displaystyle a}
). The first: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144 (sequence A000290 in the OEIS). - A cube has all multiplicities divisible by 3 (it is of the form a 3 {\displaystyle a^{3}}
for some a {\displaystyle a}
). The first: 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728 (sequence A000578 in the OEIS). - A perfect power has a common divisor m > 1 {\displaystyle m>1}
for all multiplicities (it is of the form a m {\displaystyle a^{m}}
for some a > 1 {\displaystyle a>1}
and m > 1 {\displaystyle m>1}
). The first: 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100 (sequence A001597 in the OEIS). 1 is sometimes included. - A powerful number (also called squarefull) has multiplicity greater than 1 for all its prime factors. The first: 1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 72 (sequence A001694 in the OEIS).
- A prime power has only one prime factor, i.e. ω ( n ) = 1 {\displaystyle \omega (n)=1}
. The first: 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19 (sequence A000961 in the OEIS). 1 is sometimes included. - An Achilles number is powerful but not a perfect power. The first: 72, 108, 200, 288, 392, 432, 500, 648, 675, 800, 864, 968 (sequence A052486 in the OEIS).
- A square-free integer has no prime factor with multiplicity greater than 1. The first: 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17 (sequence A005117 in the OEIS). A number where some but not all prime factors have multiplicity greater than 1 is neither square-free nor squarefull, but squareful.
- The Liouville function λ ( n ) {\displaystyle \lambda (n)}
is 1 if Ω ( n ) {\displaystyle \Omega (n)}
is even, and is -1 if Ω ( n ) {\displaystyle \Omega (n)}
is odd. - The Möbius function μ ( n ) {\displaystyle \mu (n)}
is 0 if n {\displaystyle n}
is not square-free. Otherwise μ ( n ) {\displaystyle \mu (n)}
is 1 if Ω ( n ) {\displaystyle \Omega (n)}
is even, and is −1 if Ω ( n ) {\displaystyle \Omega (n)}
is odd. - A sphenic number is square-free and the product of 3 distinct primes, i.e. it has ω ( n ) = Ω ( n ) = 3 {\displaystyle \omega (n)=\Omega (n)=3}
. The first: 30, 42, 66, 70, 78, 102, 105, 110, 114, 130, 138, 154 (sequence A007304 in the OEIS). - a 0 ( n ) {\displaystyle a_{0}(n)}
, sometimes called the integer logarithm, is the sum of primes dividing n {\displaystyle n}
, counted with multiplicity. It is an additive function. - A Ruth-Aaron pair is a pair of two consecutive numbers ( n , n + 1 ) {\displaystyle (n,n+1)}
with a 0 ( n ) = a 0 ( n + 1 ) {\displaystyle a_{0}(n)=a_{0}(n+1)}
. The first (by n {\displaystyle n}
value): 5, 8, 15, 77, 125, 714, 948, 1330, 1520, 1862, 2491, 3248 (sequence A039752 in the OEIS). Another definition is where the same prime is only counted once; if so, the first (by n {\displaystyle n}
value): 5, 24, 49, 77, 104, 153, 369, 492, 714, 1682, 2107, 2299 (sequence A006145 in the OEIS). - A primorial p n # {\displaystyle p_{n}\#}
is the product of all primes from 2 to p n {\displaystyle p_{n}}
. The first: 2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870, 6469693230, 200560490130, 7420738134810 (sequence A002110 in the OEIS). 1 # = 1 {\displaystyle 1\#=1}
is sometimes included. - A factorial n ! {\displaystyle n!}
is the product of all numbers from 1 to n {\displaystyle n}
. The first: 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600 (sequence A000142 in the OEIS). 0 ! = 1 {\displaystyle 0!=1}
is sometimes included. - A k {\displaystyle k}
-smooth number (for a natural number k {\displaystyle k}
) has its prime factors ≤ k {\displaystyle \leq k}
(so it is also j {\displaystyle j}
-smooth for any j > k {\displaystyle j>k}
). - m {\displaystyle m}
is smoother than n {\displaystyle n}
if the largest prime factor of m {\displaystyle m}
is less than the largest of n {\displaystyle n}
. - A regular number has no prime factor greater than 5 (so it is 5-smooth). The first: 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16 (sequence A051037 in the OEIS).
- A k {\displaystyle k}
-powersmooth number has all p m ≤ k {\displaystyle p^{m}\leq k}
where p {\displaystyle p}
is a prime factor with multiplicity m {\displaystyle m}
. - A frugal number has more digits than the number of digits in its prime factorization (when written like the tables below with multiplicities above 1 as exponents). The first in decimal: 125, 128, 243, 256, 343, 512, 625, 729, 1024, 1029, 1215, 1250 (sequence A046759 in the OEIS).
- An equidigital number has the same number of digits as its prime factorization. The first in decimal: 1, 2, 3, 5, 7, 10, 11, 13, 14, 15, 16, 17 (sequence A046758 in the OEIS).
- An extravagant number has fewer digits than its prime factorization. The first in decimal: 4, 6, 8, 9, 12, 18, 20, 22, 24, 26, 28, 30 (sequence A046760 in the OEIS).
- An economical number has been defined as a frugal number, but also as a number that is either frugal or equidigital.
- g c d ( m , n ) {\displaystyle gcd(m,n)}
(greatest common divisor of m {\displaystyle m}
and n {\displaystyle n}
) is the product of all prime factors which are both in m {\displaystyle m}
and n {\displaystyle n}
(with the smallest multiplicity for m {\displaystyle m}
and n {\displaystyle n}
). - m {\displaystyle m}
and n {\displaystyle n}
are coprime (also called relatively prime) if they have no common prime factors, which implies g c d ( m , n ) = 1 {\displaystyle gcd(m,n)=1}
. - l c m ( m , n ) {\displaystyle lcm(m,n)}
(least common multiple of m {\displaystyle m}
and n {\displaystyle n}
) is the product of all prime factors of m {\displaystyle m}
or n {\displaystyle n}
(with the largest multiplicity for m {\displaystyle m}
or n {\displaystyle n}
). - g c d ( m , n ) × l c m ( m , n ) = m × n {\displaystyle gcd(m,n)\times lcm(m,n)=m\times n}
. Finding the prime factors is often harder than computing g c d {\displaystyle gcd}
and l c m {\displaystyle lcm}
using other algorithms which do not require known prime factorization. - m {\displaystyle m}
is a divisor of n {\displaystyle n}
(also called m {\displaystyle m}
divides n {\displaystyle n}
, or n {\displaystyle n}
is divisible by m {\displaystyle m}
) if all prime factors of m {\displaystyle m}
have at least the same multiplicity in n {\displaystyle n}
. - The divisors of n {\displaystyle n}
are all products of some or all prime factors of n {\displaystyle n}
(including the empty product 1 of no prime factors). The number of divisors can be computed by increasing all multiplicities by 1 and then multiplying them.
Divisors and properties related to divisors are shown in table of divisors.
1 to 100
[edit] 1–20 | 1 | | 2 | 2 | | 3 | 3 | | 4 | 22 | | 5 | 5 | | 6 | 2·3 | | 7 | 7 | | 8 | 23 | | 9 | 32 | | 10 | 2·5 | | 11 | 11 | | 12 | 22·3 | | 13 | 13 | | 14 | 2·7 | | 15 | 3·5 | | 16 | 24 | | 17 | 17 | | 18 | 2·32 | | 19 | 19 | | 20 | 22·5 | | 21–40 | 21 | 3·7 | | 22 | 2·11 | | 23 | 23 | | 24 | 23·3 | | 25 | 52 | | 26 | 2·13 | | 27 | 33 | | 28 | 22·7 | | 29 | 29 | | 30 | 2·3·5 | | 31 | 31 | | 32 | 25 | | 33 | 3·11 | | 34 | 2·17 | | 35 | 5·7 | | 36 | 22·32 | | 37 | 37 | | 38 | 2·19 | | 39 | 3·13 | | 40 | 23·5 | | 41–60 | 41 | 41 | | 42 | 2·3·7 | | 43 | 43 | | 44 | 22·11 | | 45 | 32·5 | | 46 | 2·23 | | 47 | 47 | | 48 | 24·3 | | 49 | 72 | | 50 | 2·52 | | 51 | 3·17 | | 52 | 22·13 | | 53 | 53 | | 54 | 2·33 | | 55 | 5·11 | | 56 | 23·7 | | 57 | 3·19 | | 58 | 2·29 | | 59 | 59 | | 60 | 22·3·5 | | 61–80 | 61 | 61 | | 62 | 2·31 | | 63 | 32·7 | | 64 | 26 | | 65 | 5·13 | | 66 | 2·3·11 | | 67 | 67 | | 68 | 22·17 | | 69 | 3·23 | | 70 | 2·5·7 | | 71 | 71 | | 72 | 23·32 | | 73 | 73 | | 74 | 2·37 | | 75 | 3·52 | | 76 | 22·19 | | 77 | 7·11 | | 78 | 2·3·13 | | 79 | 79 | | 80 | 24·5 | | 81–100 | 81 | 34 | | 82 | 2·41 | | 83 | 83 | | 84 | 22·3·7 | | 85 | 5·17 | | 86 | 2·43 | | 87 | 3·29 | | 88 | 23·11 | | 89 | 89 | | 90 | 2·32·5 | | 91 | 7·13 | | 92 | 22·23 | | 93 | 3·31 | | 94 | 2·47 | | 95 | 5·19 | | 96 | 25·3 | | 97 | 97 | | 98 | 2·72 | | 99 | 32·11 | | 100 | 22·52 | |
101 to 200
[edit] 101–120 | 101 | 101 | | 102 | 2·3·17 | | 103 | 103 | | 104 | 23·13 | | 105 | 3·5·7 | | 106 | 2·53 | | 107 | 107 | | 108 | 22·33 | | 109 | 109 | | 110 | 2·5·11 | | 111 | 3·37 | | 112 | 24·7 | | 113 | 113 | | 114 | 2·3·19 | | 115 | 5·23 | | 116 | 22·29 | | 117 | 32·13 | | 118 | 2·59 | | 119 | 7·17 | | 120 | 23·3·5 | | 121–140 | 121 | 112 | | 122 | 2·61 | | 123 | 3·41 | | 124 | 22·31 | | 125 | 53 | | 126 | 2·32·7 | | 127 | 127 | | 128 | 27 | | 129 | 3·43 | | 130 | 2·5·13 | | 131 | 131 | | 132 | 22·3·11 | | 133 | 7·19 | | 134 | 2·67 | | 135 | 33·5 | | 136 | 23·17 | | 137 | 137 | | 138 | 2·3·23 | | 139 | 139 | | 140 | 22·5·7 | | 141–160 | 141 | 3·47 | | 142 | 2·71 | | 143 | 11·13 | | 144 | 24·32 | | 145 | 5·29 | | 146 | 2·73 | | 147 | 3·72 | | 148 | 22·37 | | 149 | 149 | | 150 | 2·3·52 | | 151 | 151 | | 152 | 23·19 | | 153 | 32·17 | | 154 | 2·7·11 | | 155 | 5·31 | | 156 | 22·3·13 | | 157 | 157 | | 158 | 2·79 | | 159 | 3·53 | | 160 | 25·5 | | 161–180 | 161 | 7·23 | | 162 | 2·34 | | 163 | 163 | | 164 | 22·41 | | 165 | 3·5·11 | | 166 | 2·83 | | 167 | 167 | | 168 | 23·3·7 | | 169 | 132 | | 170 | 2·5·17 | | 171 | 32·19 | | 172 | 22·43 | | 173 | 173 | | 174 | 2·3·29 | | 175 | 52·7 | | 176 | 24·11 | | 177 | 3·59 | | 178 | 2·89 | | 179 | 179 | | 180 | 22·32·5 | | 181–200 | 181 | 181 | | 182 | 2·7·13 | | 183 | 3·61 | | 184 | 23·23 | | 185 | 5·37 | | 186 | 2·3·31 | | 187 | 11·17 | | 188 | 22·47 | | 189 | 33·7 | | 190 | 2·5·19 | | 191 | 191 | | 192 | 26·3 | | 193 | 193 | | 194 | 2·97 | | 195 | 3·5·13 | | 196 | 22·72 | | 197 | 197 | | 198 | 2·32·11 | | 199 | 199 | | 200 | 23·52 | |
201 to 300
[edit] 201–220 | 201 | 3·67 | | 202 | 2·101 | | 203 | 7·29 | | 204 | 22·3·17 | | 205 | 5·41 | | 206 | 2·103 | | 207 | 32·23 | | 208 | 24·13 | | 209 | 11·19 | | 210 | 2·3·5·7 | | 211 | 211 | | 212 | 22·53 | | 213 | 3·71 | | 214 | 2·107 | | 215 | 5·43 | | 216 | 23·33 | | 217 | 7·31 | | 218 | 2·109 | | 219 | 3·73 | | 220 | 22·5·11 | | 221–240 | 221 | 13·17 | | 222 | 2·3·37 | | 223 | 223 | | 224 | 25·7 | | 225 | 32·52 | | 226 | 2·113 | | 227 | 227 | | 228 | 22·3·19 | | 229 | 229 | | 230 | 2·5·23 | | 231 | 3·7·11 | | 232 | 23·29 | | 233 | 233 | | 234 | 2·32·13 | | 235 | 5·47 | | 236 | 22·59 | | 237 | 3·79 | | 238 | 2·7·17 | | 239 | 239 | | 240 | 24·3·5 | | 241–260 | 241 | 241 | | 242 | 2·112 | | 243 | 35 | | 244 | 22·61 | | 245 | 5·72 | | 246 | 2·3·41 | | 247 | 13·19 | | 248 | 23·31 | | 249 | 3·83 | | 250 | 2·53 | | 251 | 251 | | 252 | 22·32·7 | | 253 | 11·23 | | 254 | 2·127 | | 255 | 3·5·17 | | 256 | 28 | | 257 | 257 | | 258 | 2·3·43 | | 259 | 7·37 | | 260 | 22·5·13 | | 261–280 | 261 | 32·29 | | 262 | 2·131 | | 263 | 263 | | 264 | 23·3·11 | | 265 | 5·53 | | 266 | 2·7·19 | | 267 | 3·89 | | 268 | 22·67 | | 269 | 269 | | 270 | 2·33·5 | | 271 | 271 | | 272 | 24·17 | | 273 | 3·7·13 | | 274 | 2·137 | | 275 | 52·11 | | 276 | 22·3·23 | | 277 | 277 | | 278 | 2·139 | | 279 | 32·31 | | 280 | 23·5·7 | | 281–300 | 281 | 281 | | 282 | 2·3·47 | | 283 | 283 | | 284 | 22·71 | | 285 | 3·5·19 | | 286 | 2·11·13 | | 287 | 7·41 | | 288 | 25·32 | | 289 | 172 | | 290 | 2·5·29 | | 291 | 3·97 | | 292 | 22·73 | | 293 | 293 | | 294 | 2·3·72 | | 295 | 5·59 | | 296 | 23·37 | | 297 | 33·11 | | 298 | 2·149 | | 299 | 13·23 | | 300 | 22·3·52 | |
301 to 400
[edit] 301–320 | 301 | 7·43 | | 302 | 2·151 | | 303 | 3·101 | | 304 | 24·19 | | 305 | 5·61 | | 306 | 2·32·17 | | 307 | 307 | | 308 | 22·7·11 | | 309 | 3·103 | | 310 | 2·5·31 | | 311 | 311 | | 312 | 23·3·13 | | 313 | 313 | | 314 | 2·157 | | 315 | 32·5·7 | | 316 | 22·79 | | 317 | 317 | | 318 | 2·3·53 | | 319 | 11·29 | | 320 | 26·5 | | 321–340 | 321 | 3·107 | | 322 | 2·7·23 | | 323 | 17·19 | | 324 | 22·34 | | 325 | 52·13 | | 326 | 2·163 | | 327 | 3·109 | | 328 | 23·41 | | 329 | 7·47 | | 330 | 2·3·5·11 | | 331 | 331 | | 332 | 22·83 | | 333 | 32·37 | | 334 | 2·167 | | 335 | 5·67 | | 336 | 24·3·7 | | 337 | 337 | | 338 | 2·132 | | 339 | 3·113 | | 340 | 22·5·17 | | 341–360 | 341 | 11·31 | | 342 | 2·32·19 | | 343 | 73 | | 344 | 23·43 | | 345 | 3·5·23 | | 346 | 2·173 | | 347 | 347 | | 348 | 22·3·29 | | 349 | 349 | | 350 | 2·52·7 | | 351 | 33·13 | | 352 | 25·11 | | 353 | 353 | | 354 | 2·3·59 | | 355 | 5·71 | | 356 | 22·89 | | 357 | 3·7·17 | | 358 | 2·179 | | 359 | 359 | | 360 | 23·32·5 | | 361–380 | 361 | 192 | | 362 | 2·181 | | 363 | 3·112 | | 364 | 22·7·13 | | 365 | 5·73 | | 366 | 2·3·61 | | 367 | 367 | | 368 | 24·23 | | 369 | 32·41 | | 370 | 2·5·37 | | 371 | 7·53 | | 372 | 22·3·31 | | 373 | 373 | | 374 | 2·11·17 | | 375 | 3·53 | | 376 | 23·47 | | 377 | 13·29 | | 378 | 2·33·7 | | 379 | 379 | | 380 | 22·5·19 | | 381–400 | 381 | 3·127 | | 382 | 2·191 | | 383 | 383 | | 384 | 27·3 | | 385 | 5·7·11 | | 386 | 2·193 | | 387 | 32·43 | | 388 | 22·97 | | 389 | 389 | | 390 | 2·3·5·13 | | 391 | 17·23 | | 392 | 23·72 | | 393 | 3·131 | | 394 | 2·197 | | 395 | 5·79 | | 396 | 22·32·11 | | 397 | 397 | | 398 | 2·199 | | 399 | 3·7·19 | | 400 | 24·52 | |
401 to 500
[edit] 401–420 | 401 | 401 | | 402 | 2·3·67 | | 403 | 13·31 | | 404 | 22·101 | | 405 | 34·5 | | 406 | 2·7·29 | | 407 | 11·37 | | 408 | 23·3·17 | | 409 | 409 | | 410 | 2·5·41 | | 411 | 3·137 | | 412 | 22·103 | | 413 | 7·59 | | 414 | 2·32·23 | | 415 | 5·83 | | 416 | 25·13 | | 417 | 3·139 | | 418 | 2·11·19 | | 419 | 419 | | 420 | 22·3·5·7 | | 421–440 | 421 | 421 | | 422 | 2·211 | | 423 | 32·47 | | 424 | 23·53 | | 425 | 52·17 | | 426 | 2·3·71 | | 427 | 7·61 | | 428 | 22·107 | | 429 | 3·11·13 | | 430 | 2·5·43 | | 431 | 431 | | 432 | 24·33 | | 433 | 433 | | 434 | 2·7·31 | | 435 | 3·5·29 | | 436 | 22·109 | | 437 | 19·23 | | 438 | 2·3·73 | | 439 | 439 | | 440 | 23·5·11 | | 441–460 | 441 | 32·72 | | 442 | 2·13·17 | | 443 | 443 | | 444 | 22·3·37 | | 445 | 5·89 | | 446 | 2·223 | | 447 | 3·149 | | 448 | 26·7 | | 449 | 449 | | 450 | 2·32·52 | | 451 | 11·41 | | 452 | 22·113 | | 453 | 3·151 | | 454 | 2·227 | | 455 | 5·7·13 | | 456 | 23·3·19 | | 457 | 457 | | 458 | 2·229 | | 459 | 33·17 | | 460 | 22·5·23 | | 461–480 | 461 | 461 | | 462 | 2·3·7·11 | | 463 | 463 | | 464 | 24·29 | | 465 | 3·5·31 | | 466 | 2·233 | | 467 | 467 | | 468 | 22·32·13 | | 469 | 7·67 | | 470 | 2·5·47 | | 471 | 3·157 | | 472 | 23·59 | | 473 | 11·43 | | 474 | 2·3·79 | | 475 | 52·19 | | 476 | 22·7·17 | | 477 | 32·53 | | 478 | 2·239 | | 479 | 479 | | 480 | 25·3·5 | | 481–500 | 481 | 13·37 | | 482 | 2·241 | | 483 | 3·7·23 | | 484 | 22·112 | | 485 | 5·97 | | 486 | 2·35 | | 487 | 487 | | 488 | 23·61 | | 489 | 3·163 | | 490 | 2·5·72 | | 491 | 491 | | 492 | 22·3·41 | | 493 | 17·29 | | 494 | 2·13·19 | | 495 | 32·5·11 | | 496 | 24·31 | | 497 | 7·71 | | 498 | 2·3·83 | | 499 | 499 | | 500 | 22·53 | |
501 to 600
[edit] 501–520 | 501 | 3·167 | | 502 | 2·251 | | 503 | 503 | | 504 | 23·32·7 | | 505 | 5·101 | | 506 | 2·11·23 | | 507 | 3·132 | | 508 | 22·127 | | 509 | 509 | | 510 | 2·3·5·17 | | 511 | 7·73 | | 512 | 29 | | 513 | 33·19 | | 514 | 2·257 | | 515 | 5·103 | | 516 | 22·3·43 | | 517 | 11·47 | | 518 | 2·7·37 | | 519 | 3·173 | | 520 | 23·5·13 | | 521–540 | 521 | 521 | | 522 | 2·32·29 | | 523 | 523 | | 524 | 22·131 | | 525 | 3·52·7 | | 526 | 2·263 | | 527 | 17·31 | | 528 | 24·3·11 | | 529 | 232 | | 530 | 2·5·53 | | 531 | 32·59 | | 532 | 22·7·19 | | 533 | 13·41 | | 534 | 2·3·89 | | 535 | 5·107 | | 536 | 23·67 | | 537 | 3·179 | | 538 | 2·269 | | 539 | 72·11 | | 540 | 22·33·5 | | 541–560 | 541 | 541 | | 542 | 2·271 | | 543 | 3·181 | | 544 | 25·17 | | 545 | 5·109 | | 546 | 2·3·7·13 | | 547 | 547 | | 548 | 22·137 | | 549 | 32·61 | | 550 | 2·52·11 | | 551 | 19·29 | | 552 | 23·3·23 | | 553 | 7·79 | | 554 | 2·277 | | 555 | 3·5·37 | | 556 | 22·139 | | 557 | 557 | | 558 | 2·32·31 | | 559 | 13·43 | | 560 | 24·5·7 | | 561–580 | 561 | 3·11·17 | | 562 | 2·281 | | 563 | 563 | | 564 | 22·3·47 | | 565 | 5·113 | | 566 | 2·283 | | 567 | 34·7 | | 568 | 23·71 | | 569 | 569 | | 570 | 2·3·5·19 | | 571 | 571 | | 572 | 22·11·13 | | 573 | 3·191 | | 574 | 2·7·41 | | 575 | 52·23 | | 576 | 26·32 | | 577 | 577 | | 578 | 2·172 | | 579 | 3·193 | | 580 | 22·5·29 | | 581–600 | 581 | 7·83 | | 582 | 2·3·97 | | 583 | 11·53 | | 584 | 23·73 | | 585 | 32·5·13 | | 586 | 2·293 | | 587 | 587 | | 588 | 22·3·72 | | 589 | 19·31 | | 590 | 2·5·59 | | 591 | 3·197 | | 592 | 24·37 | | 593 | 593 | | 594 | 2·33·11 | | 595 | 5·7·17 | | 596 | 22·149 | | 597 | 3·199 | | 598 | 2·13·23 | | 599 | 599 | | 600 | 23·3·52 | |
601 to 700
[edit] 601–620 | 601 | 601 | | 602 | 2·7·43 | | 603 | 32·67 | | 604 | 22·151 | | 605 | 5·112 | | 606 | 2·3·101 | | 607 | 607 | | 608 | 25·19 | | 609 | 3·7·29 | | 610 | 2·5·61 | | 611 | 13·47 | | 612 | 22·32·17 | | 613 | 613 | | 614 | 2·307 | | 615 | 3·5·41 | | 616 | 23·7·11 | | 617 | 617 | | 618 | 2·3·103 | | 619 | 619 | | 620 | 22·5·31 | | 621–640 | 621 | 33·23 | | 622 | 2·311 | | 623 | 7·89 | | 624 | 24·3·13 | | 625 | 54 | | 626 | 2·313 | | 627 | 3·11·19 | | 628 | 22·157 | | 629 | 17·37 | | 630 | 2·32·5·7 | | 631 | 631 | | 632 | 23·79 | | 633 | 3·211 | | 634 | 2·317 | | 635 | 5·127 | | 636 | 22·3·53 | | 637 | 72·13 | | 638 | 2·11·29 | | 639 | 32·71 | | 640 | 27·5 | | 641–660 | 641 | 641 | | 642 | 2·3·107 | | 643 | 643 | | 644 | 22·7·23 | | 645 | 3·5·43 | | 646 | 2·17·19 | | 647 | 647 | | 648 | 23·34 | | 649 | 11·59 | | 650 | 2·52·13 | | 651 | 3·7·31 | | 652 | 22·163 | | 653 | 653 | | 654 | 2·3·109 | | 655 | 5·131 | | 656 | 24·41 | | 657 | 32·73 | | 658 | 2·7·47 | | 659 | 659 | | 660 | 22·3·5·11 | | 661–680 | 661 | 661 | | 662 | 2·331 | | 663 | 3·13·17 | | 664 | 23·83 | | 665 | 5·7·19 | | 666 | 2·32·37 | | 667 | 23·29 | | 668 | 22·167 | | 669 | 3·223 | | 670 | 2·5·67 | | 671 | 11·61 | | 672 | 25·3·7 | | 673 | 673 | | 674 | 2·337 | | 675 | 33·52 | | 676 | 22·132 | | 677 | 677 | | 678 | 2·3·113 | | 679 | 7·97 | | 680 | 23·5·17 | | 681–700 | 681 | 3·227 | | 682 | 2·11·31 | | 683 | 683 | | 684 | 22·32·19 | | 685 | 5·137 | | 686 | 2·73 | | 687 | 3·229 | | 688 | 24·43 | | 689 | 13·53 | | 690 | 2·3·5·23 | | 691 | 691 | | 692 | 22·173 | | 693 | 32·7·11 | | 694 | 2·347 | | 695 | 5·139 | | 696 | 23·3·29 | | 697 | 17·41 | | 698 | 2·349 | | 699 | 3·233 | | 700 | 22·52·7 | |
701 to 800
[edit] 701–720 | 701 | 701 | | 702 | 2·33·13 | | 703 | 19·37 | | 704 | 26·11 | | 705 | 3·5·47 | | 706 | 2·353 | | 707 | 7·101 | | 708 | 22·3·59 | | 709 | 709 | | 710 | 2·5·71 | | 711 | 32·79 | | 712 | 23·89 | | 713 | 23·31 | | 714 | 2·3·7·17 | | 715 | 5·11·13 | | 716 | 22·179 | | 717 | 3·239 | | 718 | 2·359 | | 719 | 719 | | 720 | 24·32·5 | | 721–740 | 721 | 7·103 | | 722 | 2·192 | | 723 | 3·241 | | 724 | 22·181 | | 725 | 52·29 | | 726 | 2·3·112 | | 727 | 727 | | 728 | 23·7·13 | | 729 | 36 | | 730 | 2·5·73 | | 731 | 17·43 | | 732 | 22·3·61 | | 733 | 733 | | 734 | 2·367 | | 735 | 3·5·72 | | 736 | 25·23 | | 737 | 11·67 | | 738 | 2·32·41 | | 739 | 739 | | 740 | 22·5·37 | | 741–760 | 741 | 3·13·19 | | 742 | 2·7·53 | | 743 | 743 | | 744 | 23·3·31 | | 745 | 5·149 | | 746 | 2·373 | | 747 | 32·83 | | 748 | 22·11·17 | | 749 | 7·107 | | 750 | 2·3·53 | | 751 | 751 | | 752 | 24·47 | | 753 | 3·251 | | 754 | 2·13·29 | | 755 | 5·151 | | 756 | 22·33·7 | | 757 | 757 | | 758 | 2·379 | | 759 | 3·11·23 | | 760 | 23·5·19 | | 761–780 | 761 | 761 | | 762 | 2·3·127 | | 763 | 7·109 | | 764 | 22·191 | | 765 | 32·5·17 | | 766 | 2·383 | | 767 | 13·59 | | 768 | 28·3 | | 769 | 769 | | 770 | 2·5·7·11 | | 771 | 3·257 | | 772 | 22·193 | | 773 | 773 | | 774 | 2·32·43 | | 775 | 52·31 | | 776 | 23·97 | | 777 | 3·7·37 | | 778 | 2·389 | | 779 | 19·41 | | 780 | 22·3·5·13 | | 781–800 | 781 | 11·71 | | 782 | 2·17·23 | | 783 | 33·29 | | 784 | 24·72 | | 785 | 5·157 | | 786 | 2·3·131 | | 787 | 787 | | 788 | 22·197 | | 789 | 3·263 | | 790 | 2·5·79 | | 791 | 7·113 | | 792 | 23·32·11 | | 793 | 13·61 | | 794 | 2·397 | | 795 | 3·5·53 | | 796 | 22·199 | | 797 | 797 | | 798 | 2·3·7·19 | | 799 | 17·47 | | 800 | 25·52 | |
801 to 900
[edit] 801–820 | 801 | 32·89 | | 802 | 2·401 | | 803 | 11·73 | | 804 | 22·3·67 | | 805 | 5·7·23 | | 806 | 2·13·31 | | 807 | 3·269 | | 808 | 23·101 | | 809 | 809 | | 810 | 2·34·5 | | 811 | 811 | | 812 | 22·7·29 | | 813 | 3·271 | | 814 | 2·11·37 | | 815 | 5·163 | | 816 | 24·3·17 | | 817 | 19·43 | | 818 | 2·409 | | 819 | 32·7·13 | | 820 | 22·5·41 | | 821–840 | 821 | 821 | | 822 | 2·3·137 | | 823 | 823 | | 824 | 23·103 | | 825 | 3·52·11 | | 826 | 2·7·59 | | 827 | 827 | | 828 | 22·32·23 | | 829 | 829 | | 830 | 2·5·83 | | 831 | 3·277 | | 832 | 26·13 | | 833 | 72·17 | | 834 | 2·3·139 | | 835 | 5·167 | | 836 | 22·11·19 | | 837 | 33·31 | | 838 | 2·419 | | 839 | 839 | | 840 | 23·3·5·7 | | 841–860 | 841 | 292 | | 842 | 2·421 | | 843 | 3·281 | | 844 | 22·211 | | 845 | 5·132 | | 846 | 2·32·47 | | 847 | 7·112 | | 848 | 24·53 | | 849 | 3·283 | | 850 | 2·52·17 | | 851 | 23·37 | | 852 | 22·3·71 | | 853 | 853 | | 854 | 2·7·61 | | 855 | 32·5·19 | | 856 | 23·107 | | 857 | 857 | | 858 | 2·3·11·13 | | 859 | 859 | | 860 | 22·5·43 | | 861 - 880 | 861 | 3·7·41 | | 862 | 2·431 | | 863 | 863 | | 864 | 25·33 | | 865 | 5·173 | | 866 | 2·433 | | 867 | 3·172 | | 868 | 22·7·31 | | 869 | 11·79 | | 870 | 2·3·5·29 | | 871 | 13·67 | | 872 | 23·109 | | 873 | 32·97 | | 874 | 2·19·23 | | 875 | 53·7 | | 876 | 22·3·73 | | 877 | 877 | | 878 | 2·439 | | 879 | 3·293 | | 880 | 24·5·11 | | 881–900 | 881 | 881 | | 882 | 2·32·72 | | 883 | 883 | | 884 | 22·13·17 | | 885 | 3·5·59 | | 886 | 2·443 | | 887 | 887 | | 888 | 23·3·37 | | 889 | 7·127 | | 890 | 2·5·89 | | 891 | 34·11 | | 892 | 22·223 | | 893 | 19·47 | | 894 | 2·3·149 | | 895 | 5·179 | | 896 | 27·7 | | 897 | 3·13·23 | | 898 | 2·449 | | 899 | 29·31 | | 900 | 22·32·52 | |
901 to 1000
[edit] 901–920 | 901 | 17·53 | | 902 | 2·11·41 | | 903 | 3·7·43 | | 904 | 23·113 | | 905 | 5·181 | | 906 | 2·3·151 | | 907 | 907 | | 908 | 22·227 | | 909 | 32·101 | | 910 | 2·5·7·13 | | 911 | 911 | | 912 | 24·3·19 | | 913 | 11·83 | | 914 | 2·457 | | 915 | 3·5·61 | | 916 | 22·229 | | 917 | 7·131 | | 918 | 2·33·17 | | 919 | 919 | | 920 | 23·5·23 | | 921 - 940 | 921 | 3·307 | | 922 | 2·461 | | 923 | 13·71 | | 924 | 22·3·7·11 | | 925 | 52·37 | | 926 | 2·463 | | 927 | 32·103 | | 928 | 25·29 | | 929 | 929 | | 930 | 2·3·5·31 | | 931 | 72·19 | | 932 | 22·233 | | 933 | 3·311 | | 934 | 2·467 | | 935 | 5·11·17 | | 936 | 23·32·13 | | 937 | 937 | | 938 | 2·7·67 | | 939 | 3·313 | | 940 | 22·5·47 | | 941–960 | 941 | 941 | | 942 | 2·3·157 | | 943 | 23·41 | | 944 | 24·59 | | 945 | 33·5·7 | | 946 | 2·11·43 | | 947 | 947 | | 948 | 22·3·79 | | 949 | 13·73 | | 950 | 2·52·19 | | 951 | 3·317 | | 952 | 23·7·17 | | 953 | 953 | | 954 | 2·32·53 | | 955 | 5·191 | | 956 | 22·239 | | 957 | 3·11·29 | | 958 | 2·479 | | 959 | 7·137 | | 960 | 26·3·5 | | 961–980 | 961 | 312 | | 962 | 2·13·37 | | 963 | 32·107 | | 964 | 22·241 | | 965 | 5·193 | | 966 | 2·3·7·23 | | 967 | 967 | | 968 | 23·112 | | 969 | 3·17·19 | | 970 | 2·5·97 | | 971 | 971 | | 972 | 22·35 | | 973 | 7·139 | | 974 | 2·487 | | 975 | 3·52·13 | | 976 | 24·61 | | 977 | 977 | | 978 | 2·3·163 | | 979 | 11·89 | | 980 | 22·5·72 | | 981–1000 | 981 | 32·109 | | 982 | 2·491 | | 983 | 983 | | 984 | 23·3·41 | | 985 | 5·197 | | 986 | 2·17·29 | | 987 | 3·7·47 | | 988 | 22·13·19 | | 989 | 23·43 | | 990 | 2·32·5·11 | | 991 | 991 | | 992 | 25·31 | | 993 | 3·331 | | 994 | 2·7·71 | | 995 | 5·199 | | 996 | 22·3·83 | | 997 | 997 | | 998 | 2·499 | | 999 | 33·37 | | 1000 | 23·53 | |
See also
[edit] - Fundamental theorem of arithmetic – Integers have unique prime factorizations
- List of prime numbers
- Table of divisors