Tangent -- From Wolfram MathWorld

Tangent

The tangent function is defined by

 tanx=(sinx)/(cosx), (1)

where sinx is the sine function and cosx is the cosine function. The notation tgx is sometimes also used (Gradshteyn and Ryzhik 2000, p. xxix).

TangentDiagram

The common schoolbook definition of the tangent of an angle theta in a right triangle (which is equivalent to the definition just given) is as the ratio of the side lengths opposite to the angle and adjacent the angle, i.e.,

 tantheta=(opposite)/(adjacent). (2)

A convenient mnemonic for remembering the definition of the sine, cosine, and tangent is SOHCAHTOA (sine equals opposite over hypotenuse, cosine equals adjacent over hypotenuse, tangent equals opposite over adjacent).

The word "tangent" also has an important related meaning as a line or plane which touches a given curve or solid at a single point. These geometrical objects are then called a tangent line or tangent plane, respectively.

TangentReIm TanContours

The definition of the tangent function can be extended to complex arguments z using the definition

tanz=(i(e^(-iz)-e^(iz)))/(e^(-iz)+e^(iz)) (3)
=(e^(iz)-e^(-iz))/(i(e^(iz)+e^(-iz))) (4)
=(i(1-e^(2iz)))/(1+e^(2iz)) (5)
=(e^(2iz)-1)/(i(e^(2iz)+1)), (6)

where e is the base of the natural logarithm and i is the imaginary number. The tangent is implemented in the Wolfram Language as Tan[z].

A related function known as the hyperbolic tangent is similarly defined,

 tanhz=(e^z-e^(-z))/(e^z+e^(-z)). (7)

An important tangent identity is given by

 tan^2theta+1=sec^2theta. (8)

Angle addition, subtraction, half-angle, and multiple-angle formulas are given by

tan(alpha+beta)=(tanalpha+tanbeta)/(1-tanalphatanbeta) (9)
tan(alpha-beta)=(tanalpha-tanbeta)/(1+tanalphatanbeta) (10)
tan(2alpha)=(2tanalpha)/(1-tan^2alpha) (11)
tan(nalpha)=(tan[(n-1)alpha]+tanalpha)/(1-tan[(n-1)alpha]tanalpha) (12)
tan(alpha/2)=(sinalpha)/(1+cosalpha) (13)
=(1-cosalpha)/(sinalpha) (14)
=(tanalphasinalpha)/(tanalpha+sinalpha). (15)

The sine and cosine functions can conveniently be expressed in terms of a tangent as

cost=(1-tan^2(1/2t))/(1+tan^2(1/2t)) (16)
sint=(2tan(1/2t))/(1+tan^2(1/2t)), (17)

which can be particularly convenient in polynomial computations such as Gröbner basis since it reduces the number of equations compared with explicit inclusion of cost and sint together with the additional relation cos^2t+sin^2t-1=0 (Trott 2006, p. 39).

These lead to the pretty identity

 tan(x+1/4pi)=(1+tanx)/(1-tanx). (18)

There is also a beautiful angle addition identity for three variables,

 tan(alpha+beta+gamma)=(tanalpha+tanbeta+tangamma-tanalphatanbetatangamma)/(1-tanbetatangamma-tangammatanalpha-tanalphatanbeta). (19)

Another tangent identity is

tan(nx)=(sum_(k=0)^(n)(-1)^k(n; 2k+1)t^(2k+1))/(sum_(k=0)^(n)(-1)^k(n; 2k)t^(2k)) (20)
=(1/2i(1-it)^n-(1+it)^n)/(1/2(1-it)^n+(1+it)^n) (21)
=1/i((1+it)^n-(1-it)^n)/((1+it)^n+(1-it)^n), (22)

where t=tanx (Beeler et al. 1972). Written explicitly,

 tan(nx)=(2i(1-itant)^n)/((1-itant)^n+(1+itant)^n)-i, (23)

This gives the first few expansions as

tanx=t (24)
tan(2x)=(2t)/(1-t^2) (25)
tan(3x)=(3t-t^3)/(1-3t^2) (26)
tan(4x)=(4t-4t^3)/(1-6t^2+r^4) (27)
tan(5x)=(5t-10t^3+t^5)/(1-10t^2+5t^4) (28)

(OEIS A034867 and A034839).

A beautiful formula that generalizes the tangent angle addition formula, (27), and (28) is given by

 tan(sum_(n=1)^Ntheta_n)=i(product_(n=1)^(N)(1-itantheta_n)-product_(n=1)^(N)(itantheta_n+1))/(product_(n=1)^(N)(itantheta_n+1)+product_(n=1)^(N)(1-itantheta_n)) (29)

(Szmulowicz 2005).

There are a number of simple but interesting tangent identities based on those given above, including

 tan(A+60 degrees)tan(A-60 degrees)+tanAtan(A+60 degrees)+tanAtan(A-60 degrees)=-3 (30)

(Borchardt and Perrott 1930).

The Maclaurin series valid for -pi/2<x<pi/2 for the tangent function is

tanx=sum_(n=1)^(infty)((-1)^(n-1)2^(2n)(2^(2n)-1)B_(2n))/((2n)!)x^(2n-1) (31)
=x+1/3x^3+2/(15)x^5+(17)/(315)x^7+(62)/(2835)x^9+... (32)

(OEIS A002430 and A036279), where B_n is a Bernoulli number.

tanx is irrational for any rational x!=0, which can be proved by writing tanx as a continued fraction as

 tanx=x/(1-(x^2)/(3-(x^2)/(5-(x^2)/(7-...)))) (33)

(Wall 1948, p. 349; Olds 1963, p. 138) and

 tanx=1/(1/x-1/(3/x-1/(5/x-1/(7/x-...)))). (34)

both due to Lambert.

An interesting identity involving the product of tangents is

 product_(k=1)^(|_(n-1)/2_|)tan((kpi)/n)={sqrt(n)   for n odd; 1   for n even, (35)

where |_x_| is the floor function.

The equation

 x=tanx, (36)

which is equivalent to tanc(x)=1, where tanc(x) is the tanc function, does not have simple closed-form solutions.

The difference between consecutive solutions gets closer and closer to pi for higher order solutions. The function tancx=(tanx)/x is sometimes known as the tanc function.

Tag » What Is Tangent Equal To