Transpose - Wikipedia

Matrix operation which flips a matrix over its diagonal This article is about the transpose of matrices and linear operators. For other uses, see Transposition (disambiguation).
The transpose AT of a matrix A can be obtained by reflecting the elements along its main diagonal. Repeating the process on the transposed matrix returns the elements to their original position.

In linear algebra, the transpose of a matrix is an operator that flips a matrix over its diagonal; that is, transposition switches the row and column indices of the matrix A to produce another matrix, often denoted AT (among other notations).[1]

The transpose of a matrix was introduced in 1858 by the British mathematician Arthur Cayley.[2]

Transpose of a matrix

[edit] This article assumes that matrices are taken over a commutative ring. These results may not hold in the non-commutative case.

Definition

[edit]

The transpose of a matrix A, denoted by AT,[3] TA, Atr, tA or At, may be constructed by any of the following methods:

  1. Reflect A over its main diagonal (which runs from the top left to the bottom right) to obtain AT
  2. Write the rows of A as the columns of AT
  3. Write the columns of A as the rows of AT

Formally, the ith row, jth column element of AT is the jth row, ith column element of A:

[ A T ] i j = [ A ] j i . {\displaystyle \left[\mathbf {A} ^{\text{T}}\right]_{ij}=\left[\mathbf {A} \right]_{ji}.}

If A is an m × n matrix, then AT is an n × m matrix.

Matrix definitions involving transposition

[edit]

A square matrix whose transpose is equal to itself is called a symmetric matrix; that is, A is symmetric if

A T = A . {\displaystyle \mathbf {A} ^{\text{T}}=\mathbf {A} .}

A square matrix whose transpose is equal to its negative is called a skew-symmetric matrix; that is, A is skew-symmetric if

A T = − A . {\displaystyle \mathbf {A} ^{\text{T}}=-\mathbf {A} .}

A square complex matrix whose transpose is equal to the matrix with every entry replaced by its complex conjugate (denoted here with an overline) is called a Hermitian matrix (equivalent to the matrix being equal to its conjugate transpose); that is, A is Hermitian if

A T = A ¯ . {\displaystyle \mathbf {A} ^{\text{T}}={\overline {\mathbf {A} }}.}

A square complex matrix whose transpose is equal to the negation of its complex conjugate is called a skew-Hermitian matrix; that is, A is skew-Hermitian if

A T = − A ¯ . {\displaystyle \mathbf {A} ^{\text{T}}=-{\overline {\mathbf {A} }}.}

A square matrix whose transpose is equal to its inverse is called an orthogonal matrix; that is, A is orthogonal if

A T = A − 1 . {\displaystyle \mathbf {A} ^{\text{T}}=\mathbf {A} ^{-1}.}

A square complex matrix whose transpose is equal to its conjugate inverse is called a unitary matrix; that is, A is unitary if

A T = A − 1 ¯ . {\displaystyle \mathbf {A} ^{\text{T}}={\overline {\mathbf {A} ^{-1}}}.}

Examples

[edit]
  • [ 1 2 ] T = [ 1 2 ] {\displaystyle {\begin{bmatrix}1&2\end{bmatrix}}^{\text{T}}=\,{\begin{bmatrix}1\\2\end{bmatrix}}}
  • [ 1 2 3 4 ] T = [ 1 3 2 4 ] {\displaystyle {\begin{bmatrix}1&2\\3&4\end{bmatrix}}^{\text{T}}={\begin{bmatrix}1&3\\2&4\end{bmatrix}}}
  • [ 1 2 3 4 5 6 ] T = [ 1 3 5 2 4 6 ] {\displaystyle {\begin{bmatrix}1&2\\3&4\\5&6\end{bmatrix}}^{\text{T}}={\begin{bmatrix}1&3&5\\2&4&6\end{bmatrix}}}

Properties

[edit]

Let A and B be matrices and c be a scalar.

  • ( A T ) T = A . {\displaystyle \left(\mathbf {A} ^{\text{T}}\right)^{\text{T}}=\mathbf {A} .} The operation of taking the transpose is an involution (self-inverse).
  • ( A + B ) T = A T + B T . {\displaystyle \left(\mathbf {A} +\mathbf {B} \right)^{\text{T}}=\mathbf {A} ^{\text{T}}+\mathbf {B} ^{\text{T}}.} The transpose respects addition.
  • ( c A ) T = c ( A T ) . {\displaystyle \left(c\mathbf {A} \right)^{\text{T}}=c(\mathbf {A} ^{\text{T}}).} The transpose of a scalar is the same scalar. Together with the preceding property, this implies that the transpose is a linear map from the space of m × n matrices to the space of the n × m matrices.
  • ( A B ) T = B T A T . {\displaystyle \left(\mathbf {AB} \right)^{\text{T}}=\mathbf {B} ^{\text{T}}\mathbf {A} ^{\text{T}}.} The order of the factors reverses. By induction, this result extends to the general case of multiple matrices, so (A1A2...Ak−1Ak)T = AkTAk−1T…A2TA1T.
  • det ( A T ) = det ( A ) . {\displaystyle \det \left(\mathbf {A} ^{\text{T}}\right)=\det(\mathbf {A} ).} The determinant of a square matrix is the same as the determinant of its transpose.
  • The dot product of two column vectors a and b can be computed as the single entry of the matrix product a ⋅ b = a T b . {\displaystyle \mathbf {a} \cdot \mathbf {b} =\mathbf {a} ^{\text{T}}\mathbf {b} .}
  • If A has only real entries, then ATA is a positive-semidefinite matrix.
  • ( A T ) − 1 = ( A − 1 ) T . {\displaystyle \left(\mathbf {A} ^{\text{T}}\right)^{-1}=\left(\mathbf {A} ^{-1}\right)^{\text{T}}.} The transpose of an invertible matrix is also invertible, and its inverse is the transpose of the inverse of the original matrix.The notation A−T is sometimes used to represent either of these equivalent expressions.
  • If A is a square matrix, then its eigenvalues are equal to the eigenvalues of its transpose, since they share the same characteristic polynomial.
  • ( A a ) ⋅ b = a ⋅ ( A T b ) {\displaystyle \left(\mathbf {A} \mathbf {a} \right)\cdot \mathbf {b} =\mathbf {a} \cdot \left(\mathbf {A} ^{\text{T}}\mathbf {b} \right)} for two column vectors a , b {\displaystyle \mathbf {a} ,\mathbf {b} } and the standard dot product.
  • Over any field k {\displaystyle k} , a square matrix A {\displaystyle \mathbf {A} } is similar to A T {\displaystyle \mathbf {A} ^{\text{T}}} . This implies that A {\displaystyle \mathbf {A} } and A T {\displaystyle \mathbf {A} ^{\text{T}}} have the same invariant factors, which implies they share the same minimal polynomial, characteristic polynomial, and eigenvalues, among other properties. A proof of this property uses the following two observations.
    • Let A {\displaystyle \mathbf {A} } and B {\displaystyle \mathbf {B} } be n × n {\displaystyle n\times n} matrices over some base field k {\displaystyle k} and let L {\displaystyle L} be a field extension of k {\displaystyle k} . If A {\displaystyle \mathbf {A} } and B {\displaystyle \mathbf {B} } are similar as matrices over L {\displaystyle L} , then they are similar over k {\displaystyle k} . In particular this applies when L {\displaystyle L} is the algebraic closure of k {\displaystyle k} .
    • If A {\displaystyle \mathbf {A} } is a matrix over an algebraically closed field in Jordan normal form with respect to some basis, then A {\displaystyle \mathbf {A} } is similar to A T {\displaystyle \mathbf {A} ^{\text{T}}} . This further reduces to proving the same fact when A {\displaystyle \mathbf {A} } is a single Jordan block, which is a straightforward exercise.

Products

[edit]

If A is an m × n matrix and AT is its transpose, then the result of matrix multiplication with these two matrices gives two square matrices: A AT is m × m and AT A is n × n. Furthermore, these products are symmetric matrices. Indeed, the matrix product A AT has entries that are the inner product of a row of A with a column of AT. But the columns of AT are the rows of A, so the entry corresponds to the inner product of two rows of A. If pij is the entry of the product, it is obtained from rows i and j in A. The entry pji is also obtained from these rows, thus pij = pji, and the product matrix (pij) is symmetric. Similarly, the product AT A is a symmetric matrix.

A quick proof of the symmetry of A AT results from the fact that it is its own transpose:

( A A T ) T = ( A T ) T A T = A A T . {\displaystyle \left(\mathbf {A} \mathbf {A} ^{\text{T}}\right)^{\text{T}}=\left(\mathbf {A} ^{\text{T}}\right)^{\text{T}}\mathbf {A} ^{\text{T}}=\mathbf {A} \mathbf {A} ^{\text{T}}.} [4]

Implementation of matrix transposition on computers

[edit] See also: In-place matrix transposition
Illustration of row- and column-major order

On a computer, one can often avoid explicitly transposing a matrix in memory by simply accessing the same data in a different order. For example, software libraries for linear algebra, such as BLAS, typically provide options to specify that certain matrices are to be interpreted in transposed order to avoid the necessity of data movement.

However, there remain a number of circumstances in which it is necessary or desirable to physically reorder a matrix in memory to its transposed ordering. For example, with a matrix stored in row-major order, the rows of the matrix are contiguous in memory and the columns are discontiguous. If repeated operations need to be performed on the columns, for example in a fast Fourier transform algorithm, transposing the matrix in memory (to make the columns contiguous) may improve performance by increasing memory locality.

Ideally, one might hope to transpose a matrix with minimal additional storage. This leads to the problem of transposing an n × m matrix in-place, with O(1) additional storage or at most storage much less than mn. For nm, this involves a complicated permutation of the data elements that is non-trivial to implement in-place. Therefore, efficient in-place matrix transposition has been the subject of numerous research publications in computer science, starting in the late 1950s, and several algorithms have been developed.

Transposes of linear maps and bilinear forms

[edit] See also: Transpose of a linear map

As the main use of matrices is to represent linear maps between finite-dimensional vector spaces, the transpose is an operation on matrices that may be seen as the representation of some operation on linear maps.

This leads to a much more general definition of the transpose that works on every linear map, even when linear maps cannot be represented by matrices (such as in the case of infinite dimensional vector spaces). In the finite dimensional case, the matrix representing the transpose of a linear map is the transpose of the matrix representing the linear map, independently of the basis choice.

Transpose of a linear map

[edit] Main article: Transpose of a linear map

Let X# denote the algebraic dual space of an R-module X. Let X and Y be R-modules. If u : XY is a linear map, then its algebraic adjoint or dual,[5] is the map u# : Y# → X# defined by ffu. The resulting functional u#(f) is called the pullback of f by u. The following relation characterizes the algebraic adjoint of u[6]

u#(f), x = f, u(x)⟩ for all fY# and xX

where ⟨•, •⟩ is the natural pairing (i.e. defined by h, z := h(z)). This definition also applies unchanged to left modules and to vector spaces.[7]

The definition of the transpose may be seen to be independent of any bilinear form on the modules, unlike the adjoint (below).

The continuous dual space of a topological vector space (TVS) X is denoted by X. If X and Y are TVSs then a linear map u : XY is weakly continuous if and only if u#(Y) ⊆ X, in which case we let tu : YX denote the restriction of u# to Y. The map tu is called the transpose[8] of u.

If the matrix A describes a linear map with respect to bases of V and W, then the matrix AT describes the transpose of that linear map with respect to the dual bases.

Transpose of a bilinear form

[edit] Main article: Bilinear form

Every linear map to the dual space u : XX# defines a bilinear form B : X × XF, with the relation B(x, y) = u(x)(y). By defining the transpose of this bilinear form as the bilinear form tB defined by the transpose tu : X## → X# i.e. tB(y, x) = tu(Ψ(y))(x), we find that B(x, y) = tB(y, x). Here, Ψ is the natural homomorphism XX## into the double dual.

Adjoint

[edit] Not to be confused with Hermitian adjoint.

If the vector spaces X and Y have respectively nondegenerate bilinear forms BX and BY, a concept known as the adjoint, which is closely related to the transpose, may be defined:

If u : XY is a linear map between vector spaces X and Y, we define g as the adjoint of u if g : YX satisfies

B X ( x , g ( y ) ) = B Y ( u ( x ) , y ) {\displaystyle B_{X}{\big (}x,g(y){\big )}=B_{Y}{\big (}u(x),y{\big )}} for all xX and yY.

These bilinear forms define an isomorphism between X and X#, and between Y and Y#, resulting in an isomorphism between the transpose and adjoint of u. The matrix of the adjoint of a map is the transposed matrix only if the bases are orthonormal with respect to their bilinear forms. In this context, many authors however, use the term transpose to refer to the adjoint as defined here.

The adjoint allows us to consider whether g : YX is equal to u −1 : YX. In particular, this allows the orthogonal group over a vector space X with a quadratic form to be defined without reference to matrices (nor the components thereof) as the set of all linear maps XX for which the adjoint equals the inverse.

Over a complex vector space, one often works with sesquilinear forms (conjugate-linear in one argument) instead of bilinear forms. The Hermitian adjoint of a map between such spaces is defined similarly, and the matrix of the Hermitian adjoint is given by the conjugate transpose matrix if the bases are orthonormal.

See also

[edit]
  • Adjugate matrix, the transpose of the cofactor matrix
  • Conjugate transpose
  • Converse relation
  • Moore–Penrose pseudoinverse
  • Projection (linear algebra)

References

[edit]
  1. ^ Nykamp, Duane. "The transpose of a matrix". Math Insight. Retrieved September 8, 2020.
  2. ^ Arthur Cayley (1858) "A memoir on the theory of matrices", Philosophical Transactions of the Royal Society of London, 148 : 17–37. The transpose (or "transposition") is defined on page 31.
  3. ^ T.A. Whitelaw (1 April 1991). Introduction to Linear Algebra, 2nd edition. CRC Press. ISBN 978-0-7514-0159-2.
  4. ^ Gilbert Strang (2006) Linear Algebra and its Applications 4th edition, page 51, Thomson Brooks/Cole ISBN 0-03-010567-6
  5. ^ Schaefer & Wolff 1999, p. 128.
  6. ^ Halmos 1974, §44
  7. ^ Bourbaki 1989, II §2.5
  8. ^ Trèves 2006, p. 240.

Further reading

[edit]
  • Bourbaki, Nicolas (1989) [1970]. Algebra I Chapters 1-3 [Algèbre: Chapitres 1 à 3] (PDF). Éléments de mathématique. Berlin New York: Springer Science & Business Media. ISBN 978-3-540-64243-5. OCLC 18588156.
  • Halmos, Paul (1974), Finite dimensional vector spaces, Springer, ISBN 978-0-387-90093-3.
  • Maruskin, Jared M. (2012). Essential Linear Algebra. San José: Solar Crest. pp. 122–132. ISBN 978-0-9850627-3-6.
  • Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
  • Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322.
  • Schwartz, Jacob T. (2001). Introduction to Matrices and Vectors. Mineola: Dover. pp. 126–132. ISBN 0-486-42000-0.
[edit]
  • Gilbert Strang (Spring 2010) Linear Algebra from MIT Open Courseware
  • v
  • t
  • e
Linear algebra
  • Outline
  • Glossary
  • Template:Matrix classes
Linear equations
  • Linear equation
  • System of linear equations
  • Determinant
  • Minor
  • Cauchy–Binet formula
  • Cramer's rule
  • Gaussian elimination
  • Gauss–Jordan elimination
  • Overcompleteness
  • Strassen algorithm
Three dimensional Euclidean space
Matrices
  • Matrix
  • Matrix addition
  • Matrix multiplication
  • Basis transformation matrix
  • Characteristic polynomial
  • Spectrum
  • Trace
  • Eigenvalue, eigenvector and eigenspace
  • Cayley–Hamilton theorem
  • Jordan normal form
  • Weyr canonical form
  • Rank
  • Inverse, Pseudoinverse
  • Adjugate, Transpose
  • Dot product
  • Symmetric matrix, Skew-symmetric matrix
  • Orthogonal matrix, Unitary matrix
  • Hermitian matrix, Antihermitian matrix
  • Positive-(semi)definite
  • Pfaffian
  • Projection
  • Spectral theorem
  • Perron–Frobenius theorem
  • Diagonal matrix, Triangular matrix, Tridiagonal matrix
  • Block matrix
  • Sparse matrix
  • Hessenberg matrix, Hessian matrix
  • Vandermonde matrix
  • Stochastic matrix, Toeplitz matrix, Circulant matrix, Hankel matrix
  • (0,1)-matrix
  • List of matrices
Matrix decompositions
  • Cholesky decomposition
  • LU decomposition
  • QR decomposition
  • Polar decomposition
  • Spectral theorem
  • Singular value decomposition
  • Higher-order singular value decomposition
  • Schur decomposition
  • Schur complement
  • Haynsworth inertia additivity formula
  • Reducing subspace
Relations and computations
  • Matrix equivalence
  • Matrix congruence
  • Matrix similarity
  • Matrix consimilarity
  • Row equivalence
  • Elementary row operations
  • Householder transformation
  • Least squares
  • Linear least squares
  • Gram–Schmidt process
  • Woodbury matrix identity
Vector spaces
  • Vector space
  • Linear combination
  • Linear span
  • Linear independence
  • Basis, Hamel basis
  • Change of basis
  • Dimension theorem for vector spaces
  • Hamel dimension
  • Examples of vector spaces
  • Linear map
  • Shear mapping
  • Squeeze mapping
  • Linear subspace
  • Row and column spaces, Null space
  • Rank–nullity theorem
  • Nullity theorem
  • Cyclic subspace
  • Dual space, Linear functional
  • Category of vector spaces
Structures
  • Topological vector space
  • Normed vector space
  • Inner product space
  • Euclidean space
  • Orthogonality
  • Orthogonal complement
  • Orthogonal projection
  • Orthogonal group
  • Pseudo-Euclidean space
  • Null vector
  • Indefinite orthogonal group
  • Orientation
  • Improper rotation
  • Symplectic structure
Multilinear algebra
  • Multilinear algebra
  • Tensor
  • Tensors (classical)
  • Component-free treatment of tensors
  • Outer product
  • Tensor algebra
  • Exterior algebra
  • Symmetric algebra
  • Clifford algebra
  • Geometric algebra
  • Bivector
  • Multivector
  • Gamas's theorem
Affine and projective
  • Affine space
  • Affine transformation, Affine group, Affine geometry
  • Affine coordinate system, Flat (geometry)
  • Cartesian coordinate system
  • Euclidean group
  • Poincaré group
  • Galilean group
  • Projective space
  • Projective transformation
  • Projective geometry
  • Projective linear group
  • Quadric
Numerical linear algebra
  • Numerical linear algebra
  • Floating-point arithmetic
  • Numerical stability
  • Basic Linear Algebra Subprograms
  • Sparse matrix
  • Comparison of linear algebra libraries
  • Category
  • v
  • t
  • e
Tensors
Glossary of tensor theory
Scope
Mathematics
  • Coordinate system
  • Differential geometry
  • Dyadic algebra
  • Euclidean geometry
  • Exterior calculus
  • Multilinear algebra
  • Tensor algebra
  • Tensor calculus
  • Physics
  • Engineering
  • Computer vision
  • Continuum mechanics
  • Electromagnetism
  • General relativity
  • Transport phenomena
Notation
  • Abstract index notation
  • Einstein notation
  • Index notation
  • Multi-index notation
  • Penrose graphical notation
  • Ricci calculus
  • Tetrad (index notation)
  • Van der Waerden notation
  • Voigt notation
Tensordefinitions
  • Tensor (intrinsic definition)
  • Tensor field
  • Tensor density
  • Tensors in curvilinear coordinates
  • Mixed tensor
  • Antisymmetric tensor
  • Symmetric tensor
  • Tensor operator
  • Tensor bundle
  • Two-point tensor
Operations
  • Covariant derivative
  • Exterior covariant derivative
  • Exterior derivative
  • Exterior product
  • Hodge star operator
  • Lie derivative
  • Raising and lowering indices
  • Symmetrization
  • Tensor contraction
  • Tensor product
  • Transpose (2nd-order tensors)
Relatedabstractions
  • Affine connection
  • Basis
  • Cartan formalism (physics)
  • Connection form
  • Covariance and contravariance of vectors
  • Differential form
  • Dimension
  • Exterior form
  • Fiber bundle
  • Geodesic
  • Levi-Civita connection
  • Linear map
  • Manifold
  • Matrix
  • Multivector
  • Pseudotensor
  • Spinor
  • Vector
  • Vector space
Notable tensors
Mathematics
  • Kronecker delta
  • Levi-Civita symbol
  • Metric tensor
  • Nonmetricity tensor
  • Ricci curvature
  • Riemann curvature tensor
  • Torsion tensor
  • Weyl tensor
Physics
  • Moment of inertia
  • Angular momentum tensor
  • Spin tensor
  • Cauchy stress tensor
  • stress–energy tensor
  • Einstein tensor
  • EM tensor
  • Gluon field strength tensor
  • Metric tensor (GR)
Mathematicians
  • Élie Cartan
  • Augustin-Louis Cauchy
  • Elwin Bruno Christoffel
  • Albert Einstein
  • Leonhard Euler
  • Carl Friedrich Gauss
  • Hermann Grassmann
  • Tullio Levi-Civita
  • Gregorio Ricci-Curbastro
  • Bernhard Riemann
  • Jan Arnoldus Schouten
  • Woldemar Voigt
  • Hermann Weyl

Tag » What Is Transpose Of A Matrix