Understanding Type 2 Inflammation | For Healthcare Professionals

Different manifestations across patients

TYPE 2 INFLAMMATION MAY BE A CLEAR CONNECTION

Think Type 2 inflammation when evaluating your patients

Type 2 inflammation, which can be both systemic and local, contributes to immune dysregulation and epithelial barrier dysfunction.1-3

Asthma Asthma UP TO 84%

of adult patients with asthma have Type 2 inflammation4,5

Learn More Chronic Rhinosinusitis with Nasal Polyposis (CRSwNP) Chronic Rhinosinusitis with Nasal Polyposis (CRSwNP) ~80%

of patients with CRSwNP have Type 2 inflammation1,6

Learn More Atopic Dermatitis Atopic Dermatitis TYPE 2 INFLAMMATION

is highly common in patients with atopic dermatitis1,7

Learn More Chronic Spontaneous Urticaria (CSU) Chronic Spontaneous Urticaria (CSU) TYPE 2 IMMUNE CELLS

are increased in the skin of patients with CSU8-11,a

Learn More Prurigo Nodularis (PN) Prurigo Nodularis (PN) TYPE 2 INFLAMMATION

may impact both itch and lesions in PN12-15

Learn More Eosinophilic Esophagitis (EoE) Eosinophilic Esophagitis (EoE) ~75%

of patients with eosinophilic esophagitis have at least one coexisting Type 2 inflammatory disease1,16

Learn More

EXPLORE THE INTERACTIVE TYPE 2 INFLAMMATORY PATHWAY1,17-29

Select a tab to see the role of each mediator in Type 2 inflammation

CHOOSE A MEDIATOR IL-4 IL-4 promotes Th0 differentiation to Th2, B cell class switching, and eosinophil trafficking to tissues.1,22,24 IL-13 IL-13 promotes B cell class switching, eosinophil trafficking to tissues, tissue remodeling, and fibrosis.1,22,24 IL-5 IL-5 promotes eosinophil differentiation in the bone marrow.1,22,24 IL-25 The cytokines IL-25, IL-33, and TSLP are termed alarmins, which are released by the epithelium in response to an insult.1,22,24 IL-31 IL-31 drives appearance of pruritic lesions in atopic dermatitis.17 IL-33 The cytokines IL-25, IL-33, and TSLP are termed alarmins, which are released by the epithelium in response to an insult.1,22,24 TSLP The cytokines IL-25, IL-33, and TSLP are termed alarmins, which are released by the epithelium in response to an insult.1,22,24 IgE IgE, produced by B cells, promotes mast cell and basophil degranulation.1,24 full-image il-4 il-13 il-5 il-25 il-31 il-33 tslp ige

See the Type 2 inflammatory pathway in action for:

  • ASTHMA
  • CRSwNP
  • ATOPIC DERMATITIS
  • CSU
  • PN
  • EOSINOPHILIC ESOPHAGITIS
aThe exact role in CSU is unclear. bIL-4 drives differentiation of naive CD4(+) T cells to Th2.1

FcεR1, high-affinity IgE receptor; ILC2, type 2 innate lymphoid cell; TSLP, thymic stromal lymphopoietin.

References: 1. Gandhi NA, Bennett BL, Graham NMH, Pirozzi G, Stahl N, Yancopoulos GD. Targeting key proximal drivers of type 2 inflammation in disease. Nat Rev Drug Discov. 2016;15(1):35-50. 2. Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. Updated 2021. Accessed June 10, 2021. https://ginasthma.org/wp-content/uploads/2021/05/GINA-Main-Report-2021-V2-WMS.pdf 3. Corren J. Role of interleukin-13 in asthma. Curr Allergy Asthma Rep. 2013;13(5):415-420. 4. Seys SF, Scheers H, Van den Brande P, et al. Cluster analysis of sputum cytokine-high profiles reveals diversity in T(h)2-high asthma patients. Respir Res. 2017;18(1):39. doi:10.1186/s12931-017-0524-y 5. Jackson DJ, Aljamil N, Roxas C, et al. The ‘T2-low’ asthma phenotype: could it just be T2-high asthma treated with corticosteroids? Thorax. 2018;73(suppl 4):A124-A125. Abstract P48. 6. Chaaban MR, Walsh EM, Woodworth BA. Epidemiology and differential diagnosis of nasal polyps. Am J Rhinol Allergy. 2013;27(6):473-478. 7. Akdis CA, Arkwright PD, Brüggen MC, et al. Type 2 immunity in the skin and lungs. Allergy. 2020;75(7):1582-1605. 8. Ying S, Kikuchi Y, Meng Q, Kay AB, Kaplan AP. TH1/TH2 cytokines and inflammatory cells in skin biopsy specimens from patients with chronic idiopathic urticaria: comparison with the allergen-induced late-phase cutaneous reaction. J Allergy Clin Immunol. 2002;109(4):694-700. 9. Marques RZS, Criado RFJ, Machado Filho CDS, Tamanini JM, van Blarcum de Graaff Mello C, Speyer C. Correlation between the histopathology of chronic urticaria and its clinical picture. An Bras Dermatol. 2016;91(6):760-763. 10. Maurer M, Eyerich K, Eyerich S, et al. Urticaria: Collegium Internationale Allergologicum (CIA) update 2020. Int Arch Allergy Immunol. 2020;181(5):321-333. 11. Giménez-Arnau AM, DeMontojoye L, Asero R, et al. The pathogenesis of chronic spontaneous urticaria: the role of infiltrating cells [published correction appears in J Allergy Clin Immunol Pract. 2021;9(9):3533]. J Allergy Clin Immunol Pract. 2021;9(6):2195-2208. 12. Mack MR, Kim BS. The itch-scratch cycle: a neuroimmune perspective. Trends Immunol. 2018;39(12):980-991. 13. Oetjen LK, Mack MR, Feng J, et al. Sensory neurons co-opt classical immune signaling pathways to mediate chronic itch. Cell. 2017;171(1):217-228.e13. 14. Fukushi S, Yamasaki K, Aiba S. Nuclear localization of activated STAT6 and STAT3 in epidermis of prurigo nodularis. Br J Dermatol. 2011;165(5):990-996. 15. Nguyen JK, Austin E, Huang A, Mamalis A, Jagdeo J. The IL-4/IL-13 axis in skin fibrosis and scarring: mechanistic concepts and therapeutic targets. Arch Dermatol Res. 2020;312(2):81-92. 16. van Rhijn BD, Bredenoord AJ. Management of eosinophilic esophagitis based on pathophysiological evidence. J Clin Gastroenterol. 2017;51(8):659-668. 17. Brandt EB, Sivaprasad U. Th2 cytokines and atopic dermatitis. J Clin Cell Immunol. 2011;2(3):110. 18. Gittler JK, Shemer A, Suárez-Fariñas M, et al. Progressive activation of TH2/TH22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis. J Allergy Clin Immunol. 2012;130(6):1344-1354. 19. Guttman-Yassky E, Nograles KE, Krueger JG. Contrasting pathogenesis of atopic dermatitis and psoriasis—part II: immune cell subsets and therapeutic concepts. J Allergy Clin Immunol. 2011;127(6):1420-1432. 20. Noda S, Krueger JG, Guttman-Yassky E. The translational revolution and use of biologics in patients with inflammatory skin diseases. J Allergy Clin Immunol. 2015;135(2):324-336. 21. Hammad H, Lambrecht BN. Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma. Nat Rev Immunol. 2008;8(3):193-204. 22. Robinson D, Humbert M, Buhl R, et al. Revisiting type 2-high and type 2-low airway inflammation in asthma: current knowledge and therapeutic implications. Clin Exp Allergy. 2017;47(2):161-175. 23. Akdis CA, Bachert C, Cingi C, et al. Endotypes and phenotypes of chronic rhinosinusitis: a PRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology. J Allergy Clin lmmunol. 2013;131(6):1479-1490. 24. Hill DA, Spergel JM. The immunologic mechanisms of eosinophilic esophagitis. Curr Allergy Asthma Rep. 2016;16(2):9. 25. Furuta GT, Katzka DA. Eosinophilic esophagitis. N Engl J Med. 2015;373(17):1640-1648. 26. D’Alessandro A, Esposito D, Pesce M, Cuomo R, De Palma GD, Sarnelli G. Eosinophilic esophagitis: from pathophysiology to treatment. World J Gastrointest Pathophysiol. 2015;6(4):150-158. 27. Davis BP, Rothenberg ME. Mechanisms of disease of eosinophilic esophagitis. Annu Rev Pathol. 2016;11:365-393. 28. Malhotra N, Levine J. Eosinophilic esophagitis: an autoimmune esophageal disorder. Curr Probl Pediatr Adolesc Health Care. 2014;44(11):335-340. 29. Siracusa MC, Kim BS, Spergel JM, Artis D. Basophils and allergic inflammation. J Allergy Clin Immunol. 2013;132(4):789-801.

Tag » What Is Type 2 Inflammation