1-Hexanol - The NIST WebBook
- Formula: C6H14O
- Molecular weight: 102.1748
- IUPAC Standard InChI: InChI=1S/C6H14O/c1-2-3-4-5-6-7/h7H,2-6H2,1H3 Copy
- IUPAC Standard InChIKey: ZSIAUFGUXNUGDI-UHFFFAOYSA-N Copy
- CAS Registry Number: 111-27-3
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file View 3d structure (requires JavaScript / HTML 5)
- Isotopologues:
- hexanol-d3
- hexyl-d11 acetate
- Other names: Hexyl alcohol; n-Hexan-1-ol; n-Hexanol; n-Hexyl alcohol; Amylcarbinol; Caproyl alcohol; Hexanol; Pentylcarbinol; 1-Hexyl alcohol; 1-Hydroxyhexane; n-C6H13OH; Hexan-1-ol; Hexanol-(1); Epal 6; NSC 9254
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Gas phase thermochemistry data
- Condensed phase thermochemistry data
- Phase change data
- Reaction thermochemistry data
- Henry's Law data
- Gas phase ion energetics data
- Ion clustering data
- IR Spectrum
- Mass spectrum (electron ionization)
- References
- Notes
- Other data available:
- Gas Chromatography
- Data at other public NIST sites:
- Gas Phase Kinetics Database
- Options:
- Switch to calorie-based units
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments: DRB - Donald R. Burgess, Jr. ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
| Quantity | Value | Units | Method | Reference | Comment |
|---|---|---|---|---|---|
| ΔfH°gas | -316. ± 10. | kJ/mol | AVG | N/A | Average of 7 values; Individual data points |
| Quantity | Value | Units | Method | Reference | Comment |
| S°gas | 439.7 ± 2.1 | J/mol*K | N/A | Green J.H.S., 1961 | Other third-law value of entropy at 298.15 K is 441.41(4.18) J/mol*K [ Chermin H.A.G., 1961].; GT |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments: ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein DH - Eugene S. Domalski and Elizabeth D. Hearing
| Quantity | Value | Units | Method | Reference | Comment |
|---|---|---|---|---|---|
| ΔfH°liquid | -377.5 ± 0.44 | kJ/mol | Ccb | Mosselman and Dekker, 1975 | ALS |
| ΔfH°liquid | -379.4 ± 1.0 | kJ/mol | Ccb | Chao and Rossini, 1965 | see Rossini, 1934; ALS |
| ΔfH°liquid | -383.9 ± 2.0 | kJ/mol | Ccb | Green, 1960 | ALS |
| ΔfH°liquid | -387.7 | kJ/mol | Cm | Kelley, 1929 | hfusion=3.68 kcal/mol; ALS |
| Quantity | Value | Units | Method | Reference | Comment |
| ΔcH°liquid | -3984.37 ± 0.44 | kJ/mol | Ccb | Mosselman and Dekker, 1975 | Corresponding ΔfHºliquid = -377.50 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
| ΔcH°liquid | -3982.6 ± 0.92 | kJ/mol | Ccb | Chao and Rossini, 1965 | see Rossini, 1934; Corresponding ΔfHºliquid = -379.3 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
| ΔcH°liquid | -3978.1 ± 2.0 | kJ/mol | Ccb | Green, 1960 | Corresponding ΔfHºliquid = -383.8 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
| ΔcH°liquid | -3978.1 | kJ/mol | Ccb | Verkade and Coops, 1927 | Corrected for 298 and 1 atm.; Corresponding ΔfHºliquid = -383.8 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
| Quantity | Value | Units | Method | Reference | Comment |
| S°liquid | 287.4 | J/mol*K | N/A | Kelley, 1929, 2 | DH |
Constant pressure heat capacity of liquid
| Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
|---|---|---|---|
| 243.2 | 298.15 | Atrashenok, Nesterov, et al., 1991 | T = 227 to 363 K. Cp(liq) = 2.37095 - 0.0851173(T/100) - 0.195794(T/100)2 - 0.00639224(T/100)3 + 0.0530459(T/100)4 - 0.00859433(T/100)5 kJ/kg*K.; DH |
| 242.5 | 298.15 | Vesely, Barcal, et al., 1989 | T = 298.15 to 318.15 K.; DH |
| 241.32 | 298.15 | Andreoli-Ball, Patterson, et al., 1988 | DH |
| 237.85 | 298.15 | Ortega, 1986 | DH |
| 240.57 | 298.15 | Tanaka, Toyama, et al., 1986 | DH |
| 239.68 | 298.15 | Costas and Patterson, 1985 | T = 283.15, 298.15, 313.15 K.; DH |
| 239.62 | 298.15 | Bravo, Pintos, et al., 1984 | DH |
| 249.15 | 300.607 | Kalinowska and Woycicki, 1984 | T = 230 to 300 K. Value is unsmoothed experimental datum.; DH |
| 241.32 | 298.15 | Zegers and Somsen, 1984 | DH |
| 240.65 | 298.15 | Benson, D'Arcy, et al., 1983 | DH |
| 236.5 | 293.15 | Arutyunyan, 1981 | T = 273 to 533 K. p = 0.1 MPa. Unsmoothed experimental datum at 293.15 K, Cp = 2.315 kJ/kg*K.; DH |
| 236.5 | 293.15 | Arutyunyan, 1981 | T = 293 to 393 K. p = 0.1 MPa. Unsmoothed experimental datum given as 2.315 kJ/kg*K. Cp given from 293.15 to 533.15 K for pressure range 10 to 60 MPa.; DH |
| 247.7 | 303.74 | Griigo'ev, Yanin, et al., 1979 | T = 303 to 462 K. p = 0.98 bar.; DH |
| 244.8 | 298. | Hutchinson and Bailey, 1959 | DH |
| 232.46 | 290.01 | Kelley, 1929, 2 | T = 16 to 298 K. Value is unsmoothed experimental datum.; DH |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments: BS - Robert L. Brown and Stephen E. Stein TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director AC - William E. Acree, Jr., James S. Chickos ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein DRB - Donald R. Burgess, Jr. DH - Eugene S. Domalski and Elizabeth D. Hearing
| Quantity | Value | Units | Method | Reference | Comment |
|---|---|---|---|---|---|
| Tboil | 430. ± 2. | K | AVG | N/A | Average of 54 out of 59 values; Individual data points |
| Quantity | Value | Units | Method | Reference | Comment |
| Tfus | 225. ± 5. | K | AVG | N/A | Average of 6 values; Individual data points |
| Quantity | Value | Units | Method | Reference | Comment |
| Ttriple | 225.8 | K | N/A | Kelley, 1929, 3 | Uncertainty assigned by TRC = 0.3 K; TRC |
| Quantity | Value | Units | Method | Reference | Comment |
| Tc | 610.5 ± 0.9 | K | AVG | N/A | Average of 8 values; Individual data points |
| Quantity | Value | Units | Method | Reference | Comment |
| Pc | 34.2 ± 0.2 | bar | N/A | Gude and Teja, 1995 | |
| Pc | 34.20 | bar | N/A | Quadri, Khilar, et al., 1991 | Uncertainty assigned by TRC = 0.50 bar; TRC |
| Pc | 34.13 | bar | N/A | Rosenthal and Teja, 1990 | Uncertainty assigned by TRC = 0.06 bar; TRC |
| Pc | 34.13 | bar | N/A | Rosenthal and Teja, 1989 | Uncertainty assigned by TRC = 0.20 bar; TRC |
| Quantity | Value | Units | Method | Reference | Comment |
| Vc | 0.387 | l/mol | N/A | Gude and Teja, 1995 | |
| Quantity | Value | Units | Method | Reference | Comment |
| ρc | 2.58 ± 0.02 | mol/l | N/A | Gude and Teja, 1995 | |
| ρc | 2.62 | mol/l | N/A | Teja, Lee, et al., 1989 | TRC |
| ρc | 2.54 | mol/l | N/A | Anselme and Teja, 1988 | Uncertainty assigned by TRC = 0.06 mol/l; TRC |
| ρc | 2.62 | mol/l | N/A | Efremov, 1966 | Uncertainty assigned by TRC = 0.03 mol/l; TRC |
| Quantity | Value | Units | Method | Reference | Comment |
| ΔvapH° | 61. ± 2. | kJ/mol | AVG | N/A | Average of 13 out of 14 values; Individual data points |
Enthalpy of vaporization
| ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
|---|---|---|---|---|
| 44.5 | 430.5 | N/A | Majer and Svoboda, 1985 | |
| 59.7 | 359. | EB | Gierycz, Kosowski, et al., 2009 | Based on data from 344. to 384. K.; AC |
| 51.4 | 385. | EB | Tan, Li, et al., 2004 | Based on data from 370. to 416. K.; AC |
| 62.0 | 288. | GS | Kulikov, Verevkin, et al., 2001 | Based on data from 265. to 328. K.; AC |
| 61.9 ± 0.2 | 301. | GS | Verevkin, 1998 | Based on data from 268. to 333. K.; AC |
| 61.2 | 296. | N/A | N'Guimbi, Kasehgari, et al., 1992 | Based on data from 253. to 338. K.; AC |
| 57.7 | 313. | A | Stephenson and Malanowski, 1987 | Based on data from 298. to 343. K.; AC |
| 58.5 | 340. | DTA | Stephenson and Malanowski, 1987 | Based on data from 325. to 431. K. See also Kemme and Kreps, 1969.; AC |
| 58.5 ± 0.2 | 328. | C | Majer, Svoboda, et al., 1985 | AC |
| 57.6 ± 0.2 | 343. | C | Majer, Svoboda, et al., 1985 | AC |
| 55.2 ± 0.2 | 358. | C | Majer, Svoboda, et al., 1985 | AC |
| 53.8 ± 0.2 | 368. | C | Majer, Svoboda, et al., 1985 | AC |
| 47.9 | 395. | EB | Reddy, Rao, et al., 1985 | Based on data from 380. to 417. K.; AC |
| 57.9 | 323. | N/A | Wilhoit and Zwolinski, 1973 | Based on data from 308. to 430. K.; AC |
| 56.0 | 349. | N/A | Rose and Supina, 1961 | Based on data from 334. to 381. K.; AC |
| 57.9 | 348. | N/A | Butler, Ramchandani, et al., 1935 | Based on data from 333. to 425. K. See also Boublik, Fried, et al., 1984.; AC |
Enthalpy of vaporization
ΔvapH = A exp(-αTr) (1 − Tr)β ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol) Tr = reduced temperature (T / Tc)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
| Temperature (K) | 298. to 368. |
|---|---|
| A (kJ/mol) | 72.06 |
| α | -1.059 |
| β | 1.0052 |
| Tc (K) | 610. |
| Reference | Majer and Svoboda, 1985 |
Antoine Equation Parameters
log10(P) = A − (B / (T + C)) P = vapor pressure (bar) T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
| Temperature (K) | A | B | C | Reference | Comment |
|---|---|---|---|---|---|
| 325.4 to 430.5 | 4.41271 | 1422.031 | -107.706 | Kemme and Kreps, 1969 | |
| 334.1 to 381.7 | 5.64356 | 2117.967 | -51.988 | Rose and Supina, 1961 | Coefficents calculated by NIST from author's data. |
Enthalpy of fusion
| ΔfusH (kJ/mol) | Temperature (K) | Reference | Comment |
|---|---|---|---|
| 15.380 | 225.8 | Kelley, 1929, 2 | DH |
| 15.48 | 225.8 | Domalski and Hearing, 1996 | AC |
Entropy of fusion
| ΔfusS (J/mol*K) | Temperature (K) | Reference | Comment |
|---|---|---|---|
| 68.11 | 225.8 | Kelley, 1929, 2 | DH |
In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:
- SRD 103a – Thermo Data Engine (TDE) for pure compounds.
- SRD 103b – Thermo Data Engine (TDE) for pure compounds, binary mixtures and chemical reactions
- SRD 202 – Web Thermo Tables (WTT), "lite" edition
- SRD 203 – Web Thermo Tables (WTT), professional edition
- SRD 147 – Ionic Liquids Database
- SRD 156 – Clathrate Hydrate Physical Property Database
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments: B - John E. Bartmess M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
C6H13O- + =
By formula: C6H13O- + H+ = C6H14O
| Quantity | Value | Units | Method | Reference | Comment |
|---|---|---|---|---|---|
| ΔrH° | 1565. ± 8.8 | kJ/mol | G+TS | Higgins and Bartmess, 1998 | gas phase; B |
| ΔrH° | 1565. ± 13. | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Kinetic method gives energy-dependent results.; B |
| ΔrH° | 1561. ± 12. | kJ/mol | G+TS | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale; B |
| Quantity | Value | Units | Method | Reference | Comment |
| ΔrG° | 1537. ± 8.4 | kJ/mol | IMRE | Higgins and Bartmess, 1998 | gas phase; B |
| ΔrG° | 1538. ± 13. | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Kinetic method gives energy-dependent results.; B |
| ΔrG° | 1533. ± 11. | kJ/mol | CIDC | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale; B |
C3H9Sn+ + = (C3H9Sn+ •
)
By formula: C3H9Sn+ + C6H14O = (C3H9Sn+ • C6H14O)
| Quantity | Value | Units | Method | Reference | Comment |
|---|---|---|---|---|---|
| ΔrH° | 157. | kJ/mol | PHPMS | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
| Quantity | Value | Units | Method | Reference | Comment |
| ΔrS° | 139. | J/mol*K | N/A | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
Free energy of reaction
| ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
|---|---|---|---|---|
| 83.7 | 525. | PHPMS | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
Henry's Law data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K))) k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar)) d(ln(kH))/d(1/T) = Temperature dependence constant (K)
| k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference | Comment |
|---|---|---|---|---|
| 53. | Q | N/A | missing citation give several references for the Henry's law constants but don't assign them to specific species. | |
| 65. | V | N/A | ||
| 58. | M | Buttery, Ling, et al., 1969 | ||
| 64. | V | Butler, Ramchandani, et al., 1935, 2 |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments: B - John E. Bartmess MM - Michael M. Meot-Ner (Mautner) LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
Proton affinity at 298K
| Proton affinity (kJ/mol) | Reference | Comment |
|---|---|---|
| 799. | Holmes, Aubry, et al., 1999 | MM |
Ionization energy determinations
| IE (eV) | Method | Reference | Comment |
|---|---|---|---|
| 9.89 | PE | Ashmore and Burgess, 1977 | LLK |
| 10.35 | PE | Ashmore and Burgess, 1977 | Vertical value; LLK |
Appearance energy determinations
| Ion | AE (eV) | Other Products | Method | Reference | Comment |
|---|---|---|---|---|---|
| C2H4O+ | ~10.7 | ? | EI | Holmes, Terlouw, et al., 1976 | LLK |
| C4H8+ | 9.89 | ? | EI | Holmes, Terlouw, et al., 1976 | LLK |
De-protonation reactions
C6H13O- + =
By formula: C6H13O- + H+ = C6H14O
| Quantity | Value | Units | Method | Reference | Comment |
|---|---|---|---|---|---|
| ΔrH° | 1565. ± 8.8 | kJ/mol | G+TS | Higgins and Bartmess, 1998 | gas phase; B |
| ΔrH° | 1565. ± 13. | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Kinetic method gives energy-dependent results.; B |
| ΔrH° | 1561. ± 12. | kJ/mol | G+TS | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale; B |
| Quantity | Value | Units | Method | Reference | Comment |
| ΔrG° | 1537. ± 8.4 | kJ/mol | IMRE | Higgins and Bartmess, 1998 | gas phase; B |
| ΔrG° | 1538. ± 13. | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Kinetic method gives energy-dependent results.; B |
| ΔrG° | 1533. ± 11. | kJ/mol | CIDC | Boand, Houriet, et al., 1983 | gas phase; value altered from reference due to change in acidity scale; B |
Ion clustering data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.
Clustering reactions
C3H9Sn+ + = (C3H9Sn+ •
)
By formula: C3H9Sn+ + C6H14O = (C3H9Sn+ • C6H14O)
| Quantity | Value | Units | Method | Reference | Comment |
|---|---|---|---|---|---|
| ΔrH° | 157. | kJ/mol | PHPMS | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated |
| Quantity | Value | Units | Method | Reference | Comment |
| ΔrS° | 139. | J/mol*K | N/A | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated |
Free energy of reaction
| ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
|---|---|---|---|---|
| 83.7 | 525. | PHPMS | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References, Notes
Data compiled by: Coblentz Society, Inc.
- SOLUTION (10% IN CCl4 FOR 3800-1300, 10% IN CS2 FOR 1300-650, 10% IN CCl4 FOR 650-250 CM-1) VERSUS SOLVENT; PERKIN-ELMER 521 (GRATING); DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 4 cm-1 resolution
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
- gas
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
| 1.) Enter the desired X axis range (e.g., 100, 200) |
| 2.) Check here for automatic Y scaling |
| 3.) Press here to zoom |
- Plot
- Help / Software credits
Help
The interactive spectrum display requires a browser with JavaScript and HTML 5 canvas support.
Select a region with data to zoom. Select a region with no data or click the mouse on the plot to revert to the orginal display.
Credits
The following components were used in generating the plot:
- jQuery
- jQuery UI
- Flot
- Plugins for Flot:
- Resize (distributed with Flot)
- Selection (distributed with Flot)
- Axis labels
- Labels ( Modified by NIST for use in this application)
Additonal code used was developed at NIST: jcamp-dx.js and jcamp-plot.js.
Use or mention of technologies or programs in this web site is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that these items are necessarily the best available for the purpose.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
| Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
|---|---|
| NIST MS number | 19937 |
All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Green J.H.S., 1961 Green J.H.S., Thermodynamic properties of the normal alcohols C1-C12, J. Appl. Chem., 1961, 11, 397-404. [all data]
Chermin H.A.G., 1961 Chermin H.A.G., Thermo data for petrochemicals. Part 28. Gaseous normal alcohols. The important thermo properties are presented for all the gaseous normal alcohols from methanol through n-decanol, Petrol. Refiner, 1961, 40 (4), 127-130. [all data]
Mosselman and Dekker, 1975 Mosselman, C.; Dekker, H., Enthalpies of formation of n-alkan-1-ols, J. Chem. Soc. Faraday Trans. 1, 1975, 417-424. [all data]
Chao and Rossini, 1965 Chao, J.; Rossini, F.D., Heats of combustion, formation, and isomerization of nineteen alkanols, J. Chem. Eng. Data, 1965, 10, 374-379. [all data]
Rossini, 1934 Rossini, F.D., Heats of combustion and of formation of the normal aliphatic alcohols in the gaseous and liquid states, and the energies of their atomic linkages, J. Res. NBS, 1934, 13, 189-197. [all data]
Green, 1960 Green, J.H.S., Revision of the values of the heats of formation of normal alcohols, Chem. Ind. (London), 1960, 1215-1216. [all data]
Kelley, 1929 Kelley, K.K., The heat capacities of ethyl and hexyl alcohols from 16°K. to 298°K. and the corresponding entropies and free energies and free energies, J. Am. Chem. Soc., 1929, 51, 779-781. [all data]
Verkade and Coops, 1927 Verkade, P.E.; Coops, J., Jr., Calorimetric researches XIV. Heats of combustion of successive members of homologous series: the normal primary aliphatic alcohols, Recl. Trav. Chim. Pays-Bas, 1927, 46, 903-917. [all data]
Kelley, 1929, 2 Kelley, K.K., The heat capacities of ethyl and hexyl alcohols from 16°K to 298°K and the corresponding entropies and free energies, J. Am. Chem. Soc., 1929, 51, 779-786. [all data]
Atrashenok, Nesterov, et al., 1991 Atrashenok, T.R.; Nesterov, N.A.; Zhuk, I.P.; Peshchenko, A.D., Measured specific heats of hexan-1-ol and 3-methyl-2-butanol over wide temperature ranges, Inzh.-Fiz. Zh., 1991, 61(2), 301-304. [all data]
Vesely, Barcal, et al., 1989 Vesely, F.; Barcal, P.; Zabransky, M.; Svoboda, V., Heat capacities of 4-methyl-2-pentanone, 2,6-dimethyl-4-heptanone, 1-hexanol, 1-heptanol, and 1-octanol in the temperature range 298-318 K, Collect. Czech. Chem. Commun., 1989, 54, 602-607. [all data]
Andreoli-Ball, Patterson, et al., 1988 Andreoli-Ball, L.; Patterson, D.; Costas, M.; Caceres-Alonso, M., Heat capacity and corresponding states in alkan-1-ol-n-alkane systems, J. Chem. Soc., Faraday Trans. 1, 1988, 84(11), 3991-4012. [all data]
Ortega, 1986 Ortega, J., Excess molar heat capacities of the binary mixtures of cyclohexane with isomers of hexanol at 298.15 K, Rev. Latinoam. Ing. Quim. Quim. Apl., 1986, 16, 307-315. [all data]
Tanaka, Toyama, et al., 1986 Tanaka, R.; Toyama, S.; Murakami, S., Heat capacities of {xCnH2n+1OH+(1-x)C7H16} for n = 1 to 6 at 298.15 K, J. Chem. Thermodynam., 1986, 18, 63-73. [all data]
Costas and Patterson, 1985 Costas, M.; Patterson, D., Self-association of alcohols in inert solvents, J. Chem. Soc., Faraday Trans. 1, 1985, 81, 635-654. [all data]
Bravo, Pintos, et al., 1984 Bravo, R.; Pintos, M.; Baluja, M.C.; Paz Andrade, M.I.; Roux-Desgranges, G.; Grolier, J.-P.E., Excess volumes excess heat capacities of some mixtures: (an isomer of hexanol + an n-alkane) at 298.15 K, J. Chem. Thermodynam., 1984, 16, 73-79. [all data]
Kalinowska and Woycicki, 1984 Kalinowska, B.; Woycicki, W., Heat capacities of liquids in the temperature interval between 90 and 300 K and at atmospheric pressure. III. Heat capacities and excess heat capacities of (n-hexanol-1-ol + n-hexane), J. Chem. Thermodynam., 1984, 16, 609-613. [all data]
Zegers and Somsen, 1984 Zegers, H.C.; Somsen, G., Partial molar volumes and heat capacities in (dimethylformamide + an n-alkanol), J. Chem. Thermodynam., 1984, 16, 225-235. [all data]
Benson, D'Arcy, et al., 1983 Benson, G.C.; D'Arcy, P.J.; Sugamori, M.E., Heat capacities of binary mixtures of 1-hexanol with hexane isomers at 298.15 K, Thermochim. Acta, 1983, 71, 161-166. [all data]
Arutyunyan, 1981 Arutyunyan, G.S., Experimental investigaiton of the isobaric heat capacity of n-hexyl alcohol at different temperatures and pressures, Izv. Akad. Nauk Azerb., 1981, SSR (2), 97-99. [all data]
Griigo'ev, Yanin, et al., 1979 Griigo'ev, B.A.; Yanin, G.S.; Rastorguev, Yu.L.; Thermophysical parameters of alcohols, Tr. GIAP, 54, 1979, 57-64. [all data]
Hutchinson and Bailey, 1959 Hutchinson, E.; Bailey, L.G., A thermodynamic study of colloidal electrolyte solutions. II. Heat capacities of solubilized systems, experimental, Z. Physik. Chem. [N.G.], 1959, 21, 30-37. [all data]
Kelley, 1929, 3 Kelley, K.K., The heat capacities of ethyl and hexyl alcohols from 16 to 298 K and the corresponding entropies and free energies, J. Am. Chem. Soc., 1929, 51, 779-87. [all data]
Gude and Teja, 1995 Gude, M.; Teja, A.S., Vapor-Liquid Critical Properties of Elements and Compounds. 4. Aliphatic Alkanols, J. Chem. Eng. Data, 1995, 40, 1025-1036. [all data]
Quadri, Khilar, et al., 1991 Quadri, S.K.; Khilar, K.C.; Kudchadker, A.P.; Patni, M.J., Measurement of the critical temperatures and critical pressures of some thermally stable or mildly unstable alkanols, J. Chem. Thermodyn., 1991, 23, 67-76. [all data]
Rosenthal and Teja, 1990 Rosenthal, D.J.; Teja, A.S., The Critical Pressures and temperatures of Isomeric Alkanols, Ind. Eng. Chem. to be published 1990 1990, 1990. [all data]
Rosenthal and Teja, 1989 Rosenthal, D.J.; Teja, A.S., Critical pressures and temperatures of isomeric alkanols, Ind. Eng. Chem. Res., 1989, 28, 1693. [all data]
Teja, Lee, et al., 1989 Teja, A.S.; Lee, R.J.; Rosenthal, D.J.; Anselme, M.J., Correlation of the Critical Properties of Alkanes and Alkanols in 5th IUPAC Conference on Alkanes and AlkanolsGradisca, 1989. [all data]
Anselme and Teja, 1988 Anselme, M.J.; Teja, A.S., Critical Temperatures and Densities of Isomeric Alkanols with Six to Ten Carbon Atoms, Fluid Phase Equilib., 1988, 40, 127-34. [all data]
Efremov, 1966 Efremov, Yu.V., Density, Surface Tension, Saturated Vapor Pressurs and Critical Parameters of Alcohols, Zh. Fiz. Khim., 1966, 40, 1240. [all data]
Majer and Svoboda, 1985 Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Gierycz, Kosowski, et al., 2009 Gierycz, Pawel; Kosowski, Andrzej; Swietlik, Ryszard, Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols, J. Chem. Eng. Data, 2009, 54, 11, 2996-3001, https://doi.org/10.1021/je900050z . [all data]
Tan, Li, et al., 2004 Tan, Taijun; Li, Haoran; Wang, Congmin; Jiang, Hui; Han, Shijun, Isothermal and isobaric vapor--liquid equilibria for the binary system trimethylbenzoquinone + n-hexanol, Fluid Phase Equilibria, 2004, 224, 2, 279-283, https://doi.org/10.1016/j.fluid.2004.06.056 . [all data]
Kulikov, Verevkin, et al., 2001 Kulikov, Dmitry; Verevkin, Sergey P.; Heintz, Andreas, Enthalpies of vaporization of a series of aliphatic alcohols, Fluid Phase Equilibria, 2001, 192, 1-2, 187-207, https://doi.org/10.1016/S0378-3812(01)00633-1 . [all data]
Verevkin, 1998 Verevkin, Sergey P., Thermochemistry of phenols: experimental standard molar enthalpies of formation of 2-phenylphenol, 4-phenylphenol, 2,6-diphenylphenol, and 2,2´- and 4,4´-dihydroxybiphenyl, The Journal of Chemical Thermodynamics, 1998, 30, 3, 389-396, https://doi.org/10.1006/jcht.1997.0316 . [all data]
N'Guimbi, Kasehgari, et al., 1992 N'Guimbi, J.; Kasehgari, H.; Mokbel, I.; Jose, J., Tensions de vapeur d'alcools primaires dans le domaine 0,3 Pa à 1,5 kPa, Thermochimica Acta, 1992, 196, 2, 367-377, https://doi.org/10.1016/0040-6031(92)80100-B . [all data]
Stephenson and Malanowski, 1987 Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]
Kemme and Kreps, 1969 Kemme, Herbert R.; Kreps, Saul I., Vapor pressure of primary n-alkyl chlorides and alcohols, J. Chem. Eng. Data, 1969, 14, 1, 98-102, https://doi.org/10.1021/je60040a011 . [all data]
Majer, Svoboda, et al., 1985 Majer, V.; Svoboda, V.; Uchytilová, V.; Finke, M., Enthalpies of vaporization of aliphatic C5 and C6 alcohols, Fluid Phase Equilibria, 1985, 20, 111-118, https://doi.org/10.1016/0378-3812(85)90026-3 . [all data]
Reddy, Rao, et al., 1985 Reddy, K. Dayananda; Rao, M.V. Prabhakara; Ramakrishna, M., Activity coefficients and excess Gibbs free energies for the systems isobutyl methyl ketone(1)-1-pentanol(2) and isobutyl methyl ketone(1)-1-hexanol (2), J. Chem. Eng. Data, 1985, 30, 4, 394-397, https://doi.org/10.1021/je00042a008 . [all data]
Wilhoit and Zwolinski, 1973 Wilhoit, R.C.; Zwolinski, B.J., Physical and thermodynamic properties of aliphatic alcohols, J. Phys. Chem. Ref. Data Suppl., 1973, 1, 2, 1. [all data]
Rose and Supina, 1961 Rose, Arthur; Supina, W.R., Vapor Pressure and Vapor-Liquid Equilibrium Data for Methyl Esters of the Common Saturated Normal Fatty Acids., J. Chem. Eng. Data, 1961, 6, 2, 173-179, https://doi.org/10.1021/je60010a003 . [all data]
Butler, Ramchandani, et al., 1935 Butler, J.A.V.; Ramchandani, C.N.; Thomson, D.W., 58. The solubility of non-electrolytes. Part I. The free energy of hydration of some aliphatic alcohols, J. Chem. Soc., 1935, 280, https://doi.org/10.1039/jr9350000280 . [all data]
Boublik, Fried, et al., 1984 Boublik, T.; Fried, V.; Hala, E., The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]
Domalski and Hearing, 1996 Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]
Higgins and Bartmess, 1998 Higgins, P.R.; Bartmess, J.E., The Gas Phase Acidities of Long Chain Alcohols., Int. J. Mass Spectrom., 1998, 175, 1-2, 71-79, https://doi.org/10.1016/S0168-1176(98)00125-6 . [all data]
Haas and Harrison, 1993 Haas, M.J.; Harrison, A.G., The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols, Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W . [all data]
Boand, Houriet, et al., 1983 Boand, G.; Houriet, R.; Baumann, T., The gas phase acidity of aliphatic alcohols, J. Am. Chem. Soc., 1983, 105, 2203. [all data]
Stone and Splinter, 1984 Stone, J.A.; Splinter, D.E., A high-pressure mass spectrometric study of the binding of (CH3)3Sn+ to lewis bases in the gas phase, Int. J. Mass Spectrom. Ion Processes, 1984, 59, 169. [all data]
Buttery, Ling, et al., 1969 Buttery, R.G.; Ling, L.C.; Guadagni, D.G., Volatilities Aldehydes, Ketones, and Esters in Dilute Water Solution, J. Agric. Food Chem., 1969, 17, 385-389. [all data]
Butler, Ramchandani, et al., 1935, 2 Butler, J.A.V.; Ramchandani, C.N.; Thomson, D.W., The Solubility of Non-Electrolytes. Part 1. The Free Energy of Hydration of Some Alphatic Alcohols, J. Chem. Soc., 1935, 280-285, https://doi.org/10.1039/jr9350000280 . [all data]
Holmes, Aubry, et al., 1999 Holmes, J.L.; Aubry, C.; Mayer, P.M., Proton affinities of primary alkanols: An appraisal of the kinetic method, J. Phys. Chem. A, 1999, 103, 705. [all data]
Ashmore and Burgess, 1977 Ashmore, F.S.; Burgess, A.R., Study of Some Medium Size Alcohols and Hydroperoxides by Photoelectron Spectroscopy, J. Chem. Soc. Faraday Trans. 2, 1977, 73, 1247. [all data]
Holmes, Terlouw, et al., 1976 Holmes, J.L.; Terlouw, J.K.; Lossing, F.P., The thermochemistry of C2H4O+ ions, J. Phys. Chem., 1976, 80, 2860. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References
- Symbols used in this document:
AE Appearance energy Cp,liquid Constant pressure heat capacity of liquid Pc Critical pressure S°gas Entropy of gas at standard conditions S°liquid Entropy of liquid at standard conditions T Temperature Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature Vc Critical volume d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.
Từ khóa » C6h13oh
-
Hexanol - Wikipedia
-
1-Hexanol | C6H14O - PubChem
-
CID 20478583 | C6H13O- - PubChem
-
Molar Mass Of C6H13OH
-
N-HEXANOL | CAMEO Chemicals | NOAA
-
Molecular Weight Of C6H13OH
-
CHEBI:87393 - Hexan-1-ol - EMBL-EBI
-
CHEBI:88370 - Hexan-2-ol - EMBL-EBI
-
Showing Compound 2-Hexanol (FDB004514) - FooDB
-
Hexanol C6h13oh Structural Formula Vector Isolated - Shutterstock
-
FTIR Spectrum Of Liquid Hexanol C6H13OH. - ResearchGate
-
C6H13OH + O2 = CO2 + H2O - Trình Cân Bằng Phản ứng Hoá Học
-
C6H13Br + OH^- C6H13OH + Br^- Is An Example Of: - Toppr