13.5 Named Character References - HTML Standard - WhatWG
Có thể bạn quan tâm
- 13.5 Named character references
13.5 Named character references
This table lists the character reference names that are supported by HTML, and the code points to which they refer. It is referenced by the previous sections.
It is intentional, for legacy compatibility, that many code points have multiple character reference names. For example, some appear both with and without the trailing semicolon, or with different capitalizations.
| Name | Character(s) | Glyph |
|---|---|---|
| Aacute; | U+000C1 | Á |
| Aacute | U+000C1 | Á |
| aacute; | U+000E1 | á |
| aacute | U+000E1 | á |
| Abreve; | U+00102 | Ă |
| abreve; | U+00103 | ă |
| ac; | U+0223E | ∾ |
| acd; | U+0223F | ∿ |
| acE; | U+0223E U+00333 | ∾̳ |
| Acirc; | U+000C2 | Â |
| Acirc | U+000C2 | Â |
| acirc; | U+000E2 | â |
| acirc | U+000E2 | â |
| acute; | U+000B4 | ´ |
| acute | U+000B4 | ´ |
| Acy; | U+00410 | А |
| acy; | U+00430 | а |
| AElig; | U+000C6 | Æ |
| AElig | U+000C6 | Æ |
| aelig; | U+000E6 | æ |
| aelig | U+000E6 | æ |
| af; | U+02061 | |
| Afr; | U+1D504 | 𝔄 |
| afr; | U+1D51E | 𝔞 |
| Agrave; | U+000C0 | À |
| Agrave | U+000C0 | À |
| agrave; | U+000E0 | à |
| agrave | U+000E0 | à |
| alefsym; | U+02135 | ℵ |
| aleph; | U+02135 | ℵ |
| Alpha; | U+00391 | Α |
| alpha; | U+003B1 | α |
| Amacr; | U+00100 | Ā |
| amacr; | U+00101 | ā |
| amalg; | U+02A3F | ⨿ |
| AMP; | U+00026 | & |
| AMP | U+00026 | & |
| amp; | U+00026 | & |
| amp | U+00026 | & |
| And; | U+02A53 | ⩓ |
| and; | U+02227 | ∧ |
| andand; | U+02A55 | ⩕ |
| andd; | U+02A5C | ⩜ |
| andslope; | U+02A58 | ⩘ |
| andv; | U+02A5A | ⩚ |
| ang; | U+02220 | ∠ |
| ange; | U+029A4 | ⦤ |
| angle; | U+02220 | ∠ |
| angmsd; | U+02221 | ∡ |
| angmsdaa; | U+029A8 | ⦨ |
| angmsdab; | U+029A9 | ⦩ |
| angmsdac; | U+029AA | ⦪ |
| angmsdad; | U+029AB | ⦫ |
| angmsdae; | U+029AC | ⦬ |
| angmsdaf; | U+029AD | ⦭ |
| angmsdag; | U+029AE | ⦮ |
| angmsdah; | U+029AF | ⦯ |
| angrt; | U+0221F | ∟ |
| angrtvb; | U+022BE | ⊾ |
| angrtvbd; | U+0299D | ⦝ |
| angsph; | U+02222 | ∢ |
| angst; | U+000C5 | Å |
| angzarr; | U+0237C | ⍼ |
| Aogon; | U+00104 | Ą |
| aogon; | U+00105 | ą |
| Aopf; | U+1D538 | 𝔸 |
| aopf; | U+1D552 | 𝕒 |
| ap; | U+02248 | ≈ |
| apacir; | U+02A6F | ⩯ |
| apE; | U+02A70 | ⩰ |
| ape; | U+0224A | ≊ |
| apid; | U+0224B | ≋ |
| apos; | U+00027 | ' |
| ApplyFunction; | U+02061 | |
| approx; | U+02248 | ≈ |
| approxeq; | U+0224A | ≊ |
| Aring; | U+000C5 | Å |
| Aring | U+000C5 | Å |
| aring; | U+000E5 | å |
| aring | U+000E5 | å |
| Ascr; | U+1D49C | 𝒜 |
| ascr; | U+1D4B6 | 𝒶 |
| Assign; | U+02254 | ≔ |
| ast; | U+0002A | * |
| asymp; | U+02248 | ≈ |
| asympeq; | U+0224D | ≍ |
| Atilde; | U+000C3 | Ã |
| Atilde | U+000C3 | Ã |
| atilde; | U+000E3 | ã |
| atilde | U+000E3 | ã |
| Auml; | U+000C4 | Ä |
| Auml | U+000C4 | Ä |
| auml; | U+000E4 | ä |
| auml | U+000E4 | ä |
| awconint; | U+02233 | ∳ |
| awint; | U+02A11 | ⨑ |
| backcong; | U+0224C | ≌ |
| backepsilon; | U+003F6 | ϶ |
| backprime; | U+02035 | ‵ |
| backsim; | U+0223D | ∽ |
| backsimeq; | U+022CD | ⋍ |
| Backslash; | U+02216 | ∖ |
| Barv; | U+02AE7 | ⫧ |
| barvee; | U+022BD | ⊽ |
| Barwed; | U+02306 | ⌆ |
| barwed; | U+02305 | ⌅ |
| barwedge; | U+02305 | ⌅ |
| bbrk; | U+023B5 | ⎵ |
| bbrktbrk; | U+023B6 | ⎶ |
| bcong; | U+0224C | ≌ |
| Bcy; | U+00411 | Б |
| bcy; | U+00431 | б |
| bdquo; | U+0201E | „ |
| becaus; | U+02235 | ∵ |
| Because; | U+02235 | ∵ |
| because; | U+02235 | ∵ |
| bemptyv; | U+029B0 | ⦰ |
| bepsi; | U+003F6 | ϶ |
| bernou; | U+0212C | ℬ |
| Bernoullis; | U+0212C | ℬ |
| Beta; | U+00392 | Β |
| beta; | U+003B2 | β |
| beth; | U+02136 | ℶ |
| between; | U+0226C | ≬ |
| Bfr; | U+1D505 | 𝔅 |
| bfr; | U+1D51F | 𝔟 |
| bigcap; | U+022C2 | ⋂ |
| bigcirc; | U+025EF | ◯ |
| bigcup; | U+022C3 | ⋃ |
| bigodot; | U+02A00 | ⨀ |
| bigoplus; | U+02A01 | ⨁ |
| bigotimes; | U+02A02 | ⨂ |
| bigsqcup; | U+02A06 | ⨆ |
| bigstar; | U+02605 | ★ |
| bigtriangledown; | U+025BD | ▽ |
| bigtriangleup; | U+025B3 | △ |
| biguplus; | U+02A04 | ⨄ |
| bigvee; | U+022C1 | ⋁ |
| bigwedge; | U+022C0 | ⋀ |
| bkarow; | U+0290D | ⤍ |
| blacklozenge; | U+029EB | ⧫ |
| blacksquare; | U+025AA | ▪ |
| blacktriangle; | U+025B4 | ▴ |
| blacktriangledown; | U+025BE | ▾ |
| blacktriangleleft; | U+025C2 | ◂ |
| blacktriangleright; | U+025B8 | ▸ |
| blank; | U+02423 | ␣ |
| blk12; | U+02592 | ▒ |
| blk14; | U+02591 | ░ |
| blk34; | U+02593 | ▓ |
| block; | U+02588 | █ |
| bne; | U+0003D U+020E5 | =⃥ |
| bnequiv; | U+02261 U+020E5 | ≡⃥ |
| bNot; | U+02AED | ⫭ |
| bnot; | U+02310 | ⌐ |
| Bopf; | U+1D539 | 𝔹 |
| bopf; | U+1D553 | 𝕓 |
| bot; | U+022A5 | ⊥ |
| bottom; | U+022A5 | ⊥ |
| bowtie; | U+022C8 | ⋈ |
| boxbox; | U+029C9 | ⧉ |
| boxDL; | U+02557 | ╗ |
| boxDl; | U+02556 | ╖ |
| boxdL; | U+02555 | ╕ |
| boxdl; | U+02510 | ┐ |
| boxDR; | U+02554 | ╔ |
| boxDr; | U+02553 | ╓ |
| boxdR; | U+02552 | ╒ |
| boxdr; | U+0250C | ┌ |
| boxH; | U+02550 | ═ |
| boxh; | U+02500 | ─ |
| boxHD; | U+02566 | ╦ |
| boxHd; | U+02564 | ╤ |
| boxhD; | U+02565 | ╥ |
| boxhd; | U+0252C | ┬ |
| boxHU; | U+02569 | ╩ |
| boxHu; | U+02567 | ╧ |
| boxhU; | U+02568 | ╨ |
| boxhu; | U+02534 | ┴ |
| boxminus; | U+0229F | ⊟ |
| boxplus; | U+0229E | ⊞ |
| boxtimes; | U+022A0 | ⊠ |
| boxUL; | U+0255D | ╝ |
| boxUl; | U+0255C | ╜ |
| boxuL; | U+0255B | ╛ |
| boxul; | U+02518 | ┘ |
| boxUR; | U+0255A | ╚ |
| boxUr; | U+02559 | ╙ |
| boxuR; | U+02558 | ╘ |
| boxur; | U+02514 | └ |
| boxV; | U+02551 | ║ |
| boxv; | U+02502 | │ |
| boxVH; | U+0256C | ╬ |
| boxVh; | U+0256B | ╫ |
| boxvH; | U+0256A | ╪ |
| boxvh; | U+0253C | ┼ |
| boxVL; | U+02563 | ╣ |
| boxVl; | U+02562 | ╢ |
| boxvL; | U+02561 | ╡ |
| boxvl; | U+02524 | ┤ |
| boxVR; | U+02560 | ╠ |
| boxVr; | U+0255F | ╟ |
| boxvR; | U+0255E | ╞ |
| boxvr; | U+0251C | ├ |
| bprime; | U+02035 | ‵ |
| Breve; | U+002D8 | ˘ |
| breve; | U+002D8 | ˘ |
| brvbar; | U+000A6 | ¦ |
| brvbar | U+000A6 | ¦ |
| Bscr; | U+0212C | ℬ |
| bscr; | U+1D4B7 | 𝒷 |
| bsemi; | U+0204F | ⁏ |
| bsim; | U+0223D | ∽ |
| bsime; | U+022CD | ⋍ |
| bsol; | U+0005C | \ |
| bsolb; | U+029C5 | ⧅ |
| bsolhsub; | U+027C8 | ⟈ |
| bull; | U+02022 | • |
| bullet; | U+02022 | • |
| bump; | U+0224E | ≎ |
| bumpE; | U+02AAE | ⪮ |
| bumpe; | U+0224F | ≏ |
| Bumpeq; | U+0224E | ≎ |
| bumpeq; | U+0224F | ≏ |
| Cacute; | U+00106 | Ć |
| cacute; | U+00107 | ć |
| Cap; | U+022D2 | ⋒ |
| cap; | U+02229 | ∩ |
| capand; | U+02A44 | ⩄ |
| capbrcup; | U+02A49 | ⩉ |
| capcap; | U+02A4B | ⩋ |
| capcup; | U+02A47 | ⩇ |
| capdot; | U+02A40 | ⩀ |
| CapitalDifferentialD; | U+02145 | ⅅ |
| caps; | U+02229 U+0FE00 | ∩︀ |
| caret; | U+02041 | ⁁ |
| caron; | U+002C7 | ˇ |
| Cayleys; | U+0212D | ℭ |
| ccaps; | U+02A4D | ⩍ |
| Ccaron; | U+0010C | Č |
| ccaron; | U+0010D | č |
| Ccedil; | U+000C7 | Ç |
| Ccedil | U+000C7 | Ç |
| ccedil; | U+000E7 | ç |
| ccedil | U+000E7 | ç |
| Ccirc; | U+00108 | Ĉ |
| ccirc; | U+00109 | ĉ |
| Cconint; | U+02230 | ∰ |
| ccups; | U+02A4C | ⩌ |
| ccupssm; | U+02A50 | ⩐ |
| Cdot; | U+0010A | Ċ |
| cdot; | U+0010B | ċ |
| cedil; | U+000B8 | ¸ |
| cedil | U+000B8 | ¸ |
| Cedilla; | U+000B8 | ¸ |
| cemptyv; | U+029B2 | ⦲ |
| cent; | U+000A2 | ¢ |
| cent | U+000A2 | ¢ |
| CenterDot; | U+000B7 | · |
| centerdot; | U+000B7 | · |
| Cfr; | U+0212D | ℭ |
| cfr; | U+1D520 | 𝔠 |
| CHcy; | U+00427 | Ч |
| chcy; | U+00447 | ч |
| check; | U+02713 | ✓ |
| checkmark; | U+02713 | ✓ |
| Chi; | U+003A7 | Χ |
| chi; | U+003C7 | χ |
| cir; | U+025CB | ○ |
| circ; | U+002C6 | ˆ |
| circeq; | U+02257 | ≗ |
| circlearrowleft; | U+021BA | ↺ |
| circlearrowright; | U+021BB | ↻ |
| circledast; | U+0229B | ⊛ |
| circledcirc; | U+0229A | ⊚ |
| circleddash; | U+0229D | ⊝ |
| CircleDot; | U+02299 | ⊙ |
| circledR; | U+000AE | ® |
| circledS; | U+024C8 | Ⓢ |
| CircleMinus; | U+02296 | ⊖ |
| CirclePlus; | U+02295 | ⊕ |
| CircleTimes; | U+02297 | ⊗ |
| cirE; | U+029C3 | ⧃ |
| cire; | U+02257 | ≗ |
| cirfnint; | U+02A10 | ⨐ |
| cirmid; | U+02AEF | ⫯ |
| cirscir; | U+029C2 | ⧂ |
| ClockwiseContourIntegral; | U+02232 | ∲ |
| CloseCurlyDoubleQuote; | U+0201D | ” |
| CloseCurlyQuote; | U+02019 | ’ |
| clubs; | U+02663 | ♣ |
| clubsuit; | U+02663 | ♣ |
| Colon; | U+02237 | ∷ |
| colon; | U+0003A | : |
| Colone; | U+02A74 | ⩴ |
| colone; | U+02254 | ≔ |
| coloneq; | U+02254 | ≔ |
| comma; | U+0002C | , |
| commat; | U+00040 | @ |
| comp; | U+02201 | ∁ |
| compfn; | U+02218 | ∘ |
| complement; | U+02201 | ∁ |
| complexes; | U+02102 | ℂ |
| cong; | U+02245 | ≅ |
| congdot; | U+02A6D | ⩭ |
| Congruent; | U+02261 | ≡ |
| Conint; | U+0222F | ∯ |
| conint; | U+0222E | ∮ |
| ContourIntegral; | U+0222E | ∮ |
| Copf; | U+02102 | ℂ |
| copf; | U+1D554 | 𝕔 |
| coprod; | U+02210 | ∐ |
| Coproduct; | U+02210 | ∐ |
| COPY; | U+000A9 | © |
| COPY | U+000A9 | © |
| copy; | U+000A9 | © |
| copy | U+000A9 | © |
| copysr; | U+02117 | ℗ |
| CounterClockwiseContourIntegral; | U+02233 | ∳ |
| crarr; | U+021B5 | ↵ |
| Cross; | U+02A2F | ⨯ |
| cross; | U+02717 | ✗ |
| Cscr; | U+1D49E | 𝒞 |
| cscr; | U+1D4B8 | 𝒸 |
| csub; | U+02ACF | ⫏ |
| csube; | U+02AD1 | ⫑ |
| csup; | U+02AD0 | ⫐ |
| csupe; | U+02AD2 | ⫒ |
| ctdot; | U+022EF | ⋯ |
| cudarrl; | U+02938 | ⤸ |
| cudarrr; | U+02935 | ⤵ |
| cuepr; | U+022DE | ⋞ |
| cuesc; | U+022DF | ⋟ |
| cularr; | U+021B6 | ↶ |
| cularrp; | U+0293D | ⤽ |
| Cup; | U+022D3 | ⋓ |
| cup; | U+0222A | ∪ |
| cupbrcap; | U+02A48 | ⩈ |
| CupCap; | U+0224D | ≍ |
| cupcap; | U+02A46 | ⩆ |
| cupcup; | U+02A4A | ⩊ |
| cupdot; | U+0228D | ⊍ |
| cupor; | U+02A45 | ⩅ |
| cups; | U+0222A U+0FE00 | ∪︀ |
| curarr; | U+021B7 | ↷ |
| curarrm; | U+0293C | ⤼ |
| curlyeqprec; | U+022DE | ⋞ |
| curlyeqsucc; | U+022DF | ⋟ |
| curlyvee; | U+022CE | ⋎ |
| curlywedge; | U+022CF | ⋏ |
| curren; | U+000A4 | ¤ |
| curren | U+000A4 | ¤ |
| curvearrowleft; | U+021B6 | ↶ |
| curvearrowright; | U+021B7 | ↷ |
| cuvee; | U+022CE | ⋎ |
| cuwed; | U+022CF | ⋏ |
| cwconint; | U+02232 | ∲ |
| cwint; | U+02231 | ∱ |
| cylcty; | U+0232D | ⌭ |
| Dagger; | U+02021 | ‡ |
| dagger; | U+02020 | † |
| daleth; | U+02138 | ℸ |
| Darr; | U+021A1 | ↡ |
| dArr; | U+021D3 | ⇓ |
| darr; | U+02193 | ↓ |
| dash; | U+02010 | ‐ |
| Dashv; | U+02AE4 | ⫤ |
| dashv; | U+022A3 | ⊣ |
| dbkarow; | U+0290F | ⤏ |
| dblac; | U+002DD | ˝ |
| Dcaron; | U+0010E | Ď |
| dcaron; | U+0010F | ď |
| Dcy; | U+00414 | Д |
| dcy; | U+00434 | д |
| DD; | U+02145 | ⅅ |
| dd; | U+02146 | ⅆ |
| ddagger; | U+02021 | ‡ |
| ddarr; | U+021CA | ⇊ |
| DDotrahd; | U+02911 | ⤑ |
| ddotseq; | U+02A77 | ⩷ |
| deg; | U+000B0 | ° |
| deg | U+000B0 | ° |
| Del; | U+02207 | ∇ |
| Delta; | U+00394 | Δ |
| delta; | U+003B4 | δ |
| demptyv; | U+029B1 | ⦱ |
| dfisht; | U+0297F | ⥿ |
| Dfr; | U+1D507 | 𝔇 |
| dfr; | U+1D521 | 𝔡 |
| dHar; | U+02965 | ⥥ |
| dharl; | U+021C3 | ⇃ |
| dharr; | U+021C2 | ⇂ |
| DiacriticalAcute; | U+000B4 | ´ |
| DiacriticalDot; | U+002D9 | ˙ |
| DiacriticalDoubleAcute; | U+002DD | ˝ |
| DiacriticalGrave; | U+00060 | ` |
| DiacriticalTilde; | U+002DC | ˜ |
| diam; | U+022C4 | ⋄ |
| Diamond; | U+022C4 | ⋄ |
| diamond; | U+022C4 | ⋄ |
| diamondsuit; | U+02666 | ♦ |
| diams; | U+02666 | ♦ |
| die; | U+000A8 | ¨ |
| DifferentialD; | U+02146 | ⅆ |
| digamma; | U+003DD | ϝ |
| disin; | U+022F2 | ⋲ |
| div; | U+000F7 | ÷ |
| divide; | U+000F7 | ÷ |
| divide | U+000F7 | ÷ |
| divideontimes; | U+022C7 | ⋇ |
| divonx; | U+022C7 | ⋇ |
| DJcy; | U+00402 | Ђ |
| djcy; | U+00452 | ђ |
| dlcorn; | U+0231E | ⌞ |
| dlcrop; | U+0230D | ⌍ |
| dollar; | U+00024 | $ |
| Dopf; | U+1D53B | 𝔻 |
| dopf; | U+1D555 | 𝕕 |
| Dot; | U+000A8 | ¨ |
| dot; | U+002D9 | ˙ |
| DotDot; | U+020DC | ◌⃜ |
| doteq; | U+02250 | ≐ |
| doteqdot; | U+02251 | ≑ |
| DotEqual; | U+02250 | ≐ |
| dotminus; | U+02238 | ∸ |
| dotplus; | U+02214 | ∔ |
| dotsquare; | U+022A1 | ⊡ |
| doublebarwedge; | U+02306 | ⌆ |
| DoubleContourIntegral; | U+0222F | ∯ |
| DoubleDot; | U+000A8 | ¨ |
| DoubleDownArrow; | U+021D3 | ⇓ |
| DoubleLeftArrow; | U+021D0 | ⇐ |
| DoubleLeftRightArrow; | U+021D4 | ⇔ |
| DoubleLeftTee; | U+02AE4 | ⫤ |
| DoubleLongLeftArrow; | U+027F8 | ⟸ |
| DoubleLongLeftRightArrow; | U+027FA | ⟺ |
| DoubleLongRightArrow; | U+027F9 | ⟹ |
| DoubleRightArrow; | U+021D2 | ⇒ |
| DoubleRightTee; | U+022A8 | ⊨ |
| DoubleUpArrow; | U+021D1 | ⇑ |
| DoubleUpDownArrow; | U+021D5 | ⇕ |
| DoubleVerticalBar; | U+02225 | ∥ |
| DownArrow; | U+02193 | ↓ |
| Downarrow; | U+021D3 | ⇓ |
| downarrow; | U+02193 | ↓ |
| DownArrowBar; | U+02913 | ⤓ |
| DownArrowUpArrow; | U+021F5 | ⇵ |
| DownBreve; | U+00311 | ◌̑ |
| downdownarrows; | U+021CA | ⇊ |
| downharpoonleft; | U+021C3 | ⇃ |
| downharpoonright; | U+021C2 | ⇂ |
| DownLeftRightVector; | U+02950 | ⥐ |
| DownLeftTeeVector; | U+0295E | ⥞ |
| DownLeftVector; | U+021BD | ↽ |
| DownLeftVectorBar; | U+02956 | ⥖ |
| DownRightTeeVector; | U+0295F | ⥟ |
| DownRightVector; | U+021C1 | ⇁ |
| DownRightVectorBar; | U+02957 | ⥗ |
| DownTee; | U+022A4 | ⊤ |
| DownTeeArrow; | U+021A7 | ↧ |
| drbkarow; | U+02910 | ⤐ |
| drcorn; | U+0231F | ⌟ |
| drcrop; | U+0230C | ⌌ |
| Dscr; | U+1D49F | 𝒟 |
| dscr; | U+1D4B9 | 𝒹 |
| DScy; | U+00405 | Ѕ |
| dscy; | U+00455 | ѕ |
| dsol; | U+029F6 | ⧶ |
| Dstrok; | U+00110 | Đ |
| dstrok; | U+00111 | đ |
| dtdot; | U+022F1 | ⋱ |
| dtri; | U+025BF | ▿ |
| dtrif; | U+025BE | ▾ |
| duarr; | U+021F5 | ⇵ |
| duhar; | U+0296F | ⥯ |
| dwangle; | U+029A6 | ⦦ |
| DZcy; | U+0040F | Џ |
| dzcy; | U+0045F | џ |
| dzigrarr; | U+027FF | ⟿ |
| Eacute; | U+000C9 | É |
| Eacute | U+000C9 | É |
| eacute; | U+000E9 | é |
| eacute | U+000E9 | é |
| easter; | U+02A6E | ⩮ |
| Ecaron; | U+0011A | Ě |
| ecaron; | U+0011B | ě |
| ecir; | U+02256 | ≖ |
| Ecirc; | U+000CA | Ê |
| Ecirc | U+000CA | Ê |
| ecirc; | U+000EA | ê |
| ecirc | U+000EA | ê |
| ecolon; | U+02255 | ≕ |
| Ecy; | U+0042D | Э |
| ecy; | U+0044D | э |
| eDDot; | U+02A77 | ⩷ |
| Edot; | U+00116 | Ė |
| eDot; | U+02251 | ≑ |
| edot; | U+00117 | ė |
| ee; | U+02147 | ⅇ |
| efDot; | U+02252 | ≒ |
| Efr; | U+1D508 | 𝔈 |
| efr; | U+1D522 | 𝔢 |
| eg; | U+02A9A | ⪚ |
| Egrave; | U+000C8 | È |
| Egrave | U+000C8 | È |
| egrave; | U+000E8 | è |
| egrave | U+000E8 | è |
| egs; | U+02A96 | ⪖ |
| egsdot; | U+02A98 | ⪘ |
| el; | U+02A99 | ⪙ |
| Element; | U+02208 | ∈ |
| elinters; | U+023E7 | ⏧ |
| ell; | U+02113 | ℓ |
| els; | U+02A95 | ⪕ |
| elsdot; | U+02A97 | ⪗ |
| Emacr; | U+00112 | Ē |
| emacr; | U+00113 | ē |
| empty; | U+02205 | ∅ |
| emptyset; | U+02205 | ∅ |
| EmptySmallSquare; | U+025FB | ◻ |
| emptyv; | U+02205 | ∅ |
| EmptyVerySmallSquare; | U+025AB | ▫ |
| emsp; | U+02003 | |
| emsp13; | U+02004 | |
| emsp14; | U+02005 | |
| ENG; | U+0014A | Ŋ |
| eng; | U+0014B | ŋ |
| ensp; | U+02002 | |
| Eogon; | U+00118 | Ę |
| eogon; | U+00119 | ę |
| Eopf; | U+1D53C | 𝔼 |
| eopf; | U+1D556 | 𝕖 |
| epar; | U+022D5 | ⋕ |
| eparsl; | U+029E3 | ⧣ |
| eplus; | U+02A71 | ⩱ |
| epsi; | U+003B5 | ε |
| Epsilon; | U+00395 | Ε |
| epsilon; | U+003B5 | ε |
| epsiv; | U+003F5 | ϵ |
| eqcirc; | U+02256 | ≖ |
| eqcolon; | U+02255 | ≕ |
| eqsim; | U+02242 | ≂ |
| eqslantgtr; | U+02A96 | ⪖ |
| eqslantless; | U+02A95 | ⪕ |
| Equal; | U+02A75 | ⩵ |
| equals; | U+0003D | = |
| EqualTilde; | U+02242 | ≂ |
| equest; | U+0225F | ≟ |
| Equilibrium; | U+021CC | ⇌ |
| equiv; | U+02261 | ≡ |
| equivDD; | U+02A78 | ⩸ |
| eqvparsl; | U+029E5 | ⧥ |
| erarr; | U+02971 | ⥱ |
| erDot; | U+02253 | ≓ |
| Escr; | U+02130 | ℰ |
| escr; | U+0212F | ℯ |
| esdot; | U+02250 | ≐ |
| Esim; | U+02A73 | ⩳ |
| esim; | U+02242 | ≂ |
| Eta; | U+00397 | Η |
| eta; | U+003B7 | η |
| ETH; | U+000D0 | Ð |
| ETH | U+000D0 | Ð |
| eth; | U+000F0 | ð |
| eth | U+000F0 | ð |
| Euml; | U+000CB | Ë |
| Euml | U+000CB | Ë |
| euml; | U+000EB | ë |
| euml | U+000EB | ë |
| euro; | U+020AC | € |
| excl; | U+00021 | ! |
| exist; | U+02203 | ∃ |
| Exists; | U+02203 | ∃ |
| expectation; | U+02130 | ℰ |
| ExponentialE; | U+02147 | ⅇ |
| exponentiale; | U+02147 | ⅇ |
| fallingdotseq; | U+02252 | ≒ |
| Fcy; | U+00424 | Ф |
| fcy; | U+00444 | ф |
| female; | U+02640 | ♀ |
| ffilig; | U+0FB03 | ffi |
| fflig; | U+0FB00 | ff |
| ffllig; | U+0FB04 | ffl |
| Ffr; | U+1D509 | 𝔉 |
| ffr; | U+1D523 | 𝔣 |
| filig; | U+0FB01 | fi |
| FilledSmallSquare; | U+025FC | ◼ |
| FilledVerySmallSquare; | U+025AA | ▪ |
| fjlig; | U+00066 U+0006A | fj |
| flat; | U+0266D | ♭ |
| fllig; | U+0FB02 | fl |
| fltns; | U+025B1 | ▱ |
| fnof; | U+00192 | ƒ |
| Fopf; | U+1D53D | 𝔽 |
| fopf; | U+1D557 | 𝕗 |
| ForAll; | U+02200 | ∀ |
| forall; | U+02200 | ∀ |
| fork; | U+022D4 | ⋔ |
| forkv; | U+02AD9 | ⫙ |
| Fouriertrf; | U+02131 | ℱ |
| fpartint; | U+02A0D | ⨍ |
| frac12; | U+000BD | ½ |
| frac12 | U+000BD | ½ |
| frac13; | U+02153 | ⅓ |
| frac14; | U+000BC | ¼ |
| frac14 | U+000BC | ¼ |
| frac15; | U+02155 | ⅕ |
| frac16; | U+02159 | ⅙ |
| frac18; | U+0215B | ⅛ |
| frac23; | U+02154 | ⅔ |
| frac25; | U+02156 | ⅖ |
| frac34; | U+000BE | ¾ |
| frac34 | U+000BE | ¾ |
| frac35; | U+02157 | ⅗ |
| frac38; | U+0215C | ⅜ |
| frac45; | U+02158 | ⅘ |
| frac56; | U+0215A | ⅚ |
| frac58; | U+0215D | ⅝ |
| frac78; | U+0215E | ⅞ |
| frasl; | U+02044 | ⁄ |
| frown; | U+02322 | ⌢ |
| Fscr; | U+02131 | ℱ |
| fscr; | U+1D4BB | 𝒻 |
| gacute; | U+001F5 | ǵ |
| Gamma; | U+00393 | Γ |
| gamma; | U+003B3 | γ |
| Gammad; | U+003DC | Ϝ |
| gammad; | U+003DD | ϝ |
| gap; | U+02A86 | ⪆ |
| Gbreve; | U+0011E | Ğ |
| gbreve; | U+0011F | ğ |
| Gcedil; | U+00122 | Ģ |
| Gcirc; | U+0011C | Ĝ |
| gcirc; | U+0011D | ĝ |
| Gcy; | U+00413 | Г |
| gcy; | U+00433 | г |
| Gdot; | U+00120 | Ġ |
| gdot; | U+00121 | ġ |
| gE; | U+02267 | ≧ |
| ge; | U+02265 | ≥ |
| gEl; | U+02A8C | ⪌ |
| gel; | U+022DB | ⋛ |
| geq; | U+02265 | ≥ |
| geqq; | U+02267 | ≧ |
| geqslant; | U+02A7E | ⩾ |
| ges; | U+02A7E | ⩾ |
| gescc; | U+02AA9 | ⪩ |
| gesdot; | U+02A80 | ⪀ |
| gesdoto; | U+02A82 | ⪂ |
| gesdotol; | U+02A84 | ⪄ |
| gesl; | U+022DB U+0FE00 | ⋛︀ |
| gesles; | U+02A94 | ⪔ |
| Gfr; | U+1D50A | 𝔊 |
| gfr; | U+1D524 | 𝔤 |
| Gg; | U+022D9 | ⋙ |
| gg; | U+0226B | ≫ |
| ggg; | U+022D9 | ⋙ |
| gimel; | U+02137 | ℷ |
| GJcy; | U+00403 | Ѓ |
| gjcy; | U+00453 | ѓ |
| gl; | U+02277 | ≷ |
| gla; | U+02AA5 | ⪥ |
| glE; | U+02A92 | ⪒ |
| glj; | U+02AA4 | ⪤ |
| gnap; | U+02A8A | ⪊ |
| gnapprox; | U+02A8A | ⪊ |
| gnE; | U+02269 | ≩ |
| gne; | U+02A88 | ⪈ |
| gneq; | U+02A88 | ⪈ |
| gneqq; | U+02269 | ≩ |
| gnsim; | U+022E7 | ⋧ |
| Gopf; | U+1D53E | 𝔾 |
| gopf; | U+1D558 | 𝕘 |
| grave; | U+00060 | ` |
| GreaterEqual; | U+02265 | ≥ |
| GreaterEqualLess; | U+022DB | ⋛ |
| GreaterFullEqual; | U+02267 | ≧ |
| GreaterGreater; | U+02AA2 | ⪢ |
| GreaterLess; | U+02277 | ≷ |
| GreaterSlantEqual; | U+02A7E | ⩾ |
| GreaterTilde; | U+02273 | ≳ |
| Gscr; | U+1D4A2 | 𝒢 |
| gscr; | U+0210A | ℊ |
| gsim; | U+02273 | ≳ |
| gsime; | U+02A8E | ⪎ |
| gsiml; | U+02A90 | ⪐ |
| GT; | U+0003E | > |
| GT | U+0003E | > |
| Gt; | U+0226B | ≫ |
| gt; | U+0003E | > |
| gt | U+0003E | > |
| gtcc; | U+02AA7 | ⪧ |
| gtcir; | U+02A7A | ⩺ |
| gtdot; | U+022D7 | ⋗ |
| gtlPar; | U+02995 | ⦕ |
| gtquest; | U+02A7C | ⩼ |
| gtrapprox; | U+02A86 | ⪆ |
| gtrarr; | U+02978 | ⥸ |
| gtrdot; | U+022D7 | ⋗ |
| gtreqless; | U+022DB | ⋛ |
| gtreqqless; | U+02A8C | ⪌ |
| gtrless; | U+02277 | ≷ |
| gtrsim; | U+02273 | ≳ |
| gvertneqq; | U+02269 U+0FE00 | ≩︀ |
| gvnE; | U+02269 U+0FE00 | ≩︀ |
| Hacek; | U+002C7 | ˇ |
| hairsp; | U+0200A | |
| half; | U+000BD | ½ |
| hamilt; | U+0210B | ℋ |
| HARDcy; | U+0042A | Ъ |
| hardcy; | U+0044A | ъ |
| hArr; | U+021D4 | ⇔ |
| harr; | U+02194 | ↔ |
| harrcir; | U+02948 | ⥈ |
| harrw; | U+021AD | ↭ |
| Hat; | U+0005E | ^ |
| hbar; | U+0210F | ℏ |
| Hcirc; | U+00124 | Ĥ |
| hcirc; | U+00125 | ĥ |
| hearts; | U+02665 | ♥ |
| heartsuit; | U+02665 | ♥ |
| hellip; | U+02026 | … |
| hercon; | U+022B9 | ⊹ |
| Hfr; | U+0210C | ℌ |
| hfr; | U+1D525 | 𝔥 |
| HilbertSpace; | U+0210B | ℋ |
| hksearow; | U+02925 | ⤥ |
| hkswarow; | U+02926 | ⤦ |
| hoarr; | U+021FF | ⇿ |
| homtht; | U+0223B | ∻ |
| hookleftarrow; | U+021A9 | ↩ |
| hookrightarrow; | U+021AA | ↪ |
| Hopf; | U+0210D | ℍ |
| hopf; | U+1D559 | 𝕙 |
| horbar; | U+02015 | ― |
| HorizontalLine; | U+02500 | ─ |
| Hscr; | U+0210B | ℋ |
| hscr; | U+1D4BD | 𝒽 |
| hslash; | U+0210F | ℏ |
| Hstrok; | U+00126 | Ħ |
| hstrok; | U+00127 | ħ |
| HumpDownHump; | U+0224E | ≎ |
| HumpEqual; | U+0224F | ≏ |
| hybull; | U+02043 | ⁃ |
| hyphen; | U+02010 | ‐ |
| Iacute; | U+000CD | Í |
| Iacute | U+000CD | Í |
| iacute; | U+000ED | í |
| iacute | U+000ED | í |
| ic; | U+02063 | |
| Icirc; | U+000CE | Î |
| Icirc | U+000CE | Î |
| icirc; | U+000EE | î |
| icirc | U+000EE | î |
| Icy; | U+00418 | И |
| icy; | U+00438 | и |
| Idot; | U+00130 | İ |
| IEcy; | U+00415 | Е |
| iecy; | U+00435 | е |
| iexcl; | U+000A1 | ¡ |
| iexcl | U+000A1 | ¡ |
| iff; | U+021D4 | ⇔ |
| Ifr; | U+02111 | ℑ |
| ifr; | U+1D526 | 𝔦 |
| Igrave; | U+000CC | Ì |
| Igrave | U+000CC | Ì |
| igrave; | U+000EC | ì |
| igrave | U+000EC | ì |
| ii; | U+02148 | ⅈ |
| iiiint; | U+02A0C | ⨌ |
| iiint; | U+0222D | ∭ |
| iinfin; | U+029DC | ⧜ |
| iiota; | U+02129 | ℩ |
| IJlig; | U+00132 | IJ |
| ijlig; | U+00133 | ij |
| Im; | U+02111 | ℑ |
| Imacr; | U+0012A | Ī |
| imacr; | U+0012B | ī |
| image; | U+02111 | ℑ |
| ImaginaryI; | U+02148 | ⅈ |
| imagline; | U+02110 | ℐ |
| imagpart; | U+02111 | ℑ |
| imath; | U+00131 | ı |
| imof; | U+022B7 | ⊷ |
| imped; | U+001B5 | Ƶ |
| Implies; | U+021D2 | ⇒ |
| in; | U+02208 | ∈ |
| incare; | U+02105 | ℅ |
| infin; | U+0221E | ∞ |
| infintie; | U+029DD | ⧝ |
| inodot; | U+00131 | ı |
| Int; | U+0222C | ∬ |
| int; | U+0222B | ∫ |
| intcal; | U+022BA | ⊺ |
| integers; | U+02124 | ℤ |
| Integral; | U+0222B | ∫ |
| intercal; | U+022BA | ⊺ |
| Intersection; | U+022C2 | ⋂ |
| intlarhk; | U+02A17 | ⨗ |
| intprod; | U+02A3C | ⨼ |
| InvisibleComma; | U+02063 | |
| InvisibleTimes; | U+02062 | |
| IOcy; | U+00401 | Ё |
| iocy; | U+00451 | ё |
| Iogon; | U+0012E | Į |
| iogon; | U+0012F | į |
| Iopf; | U+1D540 | 𝕀 |
| iopf; | U+1D55A | 𝕚 |
| Iota; | U+00399 | Ι |
| iota; | U+003B9 | ι |
| iprod; | U+02A3C | ⨼ |
| iquest; | U+000BF | ¿ |
| iquest | U+000BF | ¿ |
| Iscr; | U+02110 | ℐ |
| iscr; | U+1D4BE | 𝒾 |
| isin; | U+02208 | ∈ |
| isindot; | U+022F5 | ⋵ |
| isinE; | U+022F9 | ⋹ |
| isins; | U+022F4 | ⋴ |
| isinsv; | U+022F3 | ⋳ |
| isinv; | U+02208 | ∈ |
| it; | U+02062 | |
| Itilde; | U+00128 | Ĩ |
| itilde; | U+00129 | ĩ |
| Iukcy; | U+00406 | І |
| iukcy; | U+00456 | і |
| Iuml; | U+000CF | Ï |
| Iuml | U+000CF | Ï |
| iuml; | U+000EF | ï |
| iuml | U+000EF | ï |
| Jcirc; | U+00134 | Ĵ |
| jcirc; | U+00135 | ĵ |
| Jcy; | U+00419 | Й |
| jcy; | U+00439 | й |
| Jfr; | U+1D50D | 𝔍 |
| jfr; | U+1D527 | 𝔧 |
| jmath; | U+00237 | ȷ |
| Jopf; | U+1D541 | 𝕁 |
| jopf; | U+1D55B | 𝕛 |
| Jscr; | U+1D4A5 | 𝒥 |
| jscr; | U+1D4BF | 𝒿 |
| Jsercy; | U+00408 | Ј |
| jsercy; | U+00458 | ј |
| Jukcy; | U+00404 | Є |
| jukcy; | U+00454 | є |
| Kappa; | U+0039A | Κ |
| kappa; | U+003BA | κ |
| kappav; | U+003F0 | ϰ |
| Kcedil; | U+00136 | Ķ |
| kcedil; | U+00137 | ķ |
| Kcy; | U+0041A | К |
| kcy; | U+0043A | к |
| Kfr; | U+1D50E | 𝔎 |
| kfr; | U+1D528 | 𝔨 |
| kgreen; | U+00138 | ĸ |
| KHcy; | U+00425 | Х |
| khcy; | U+00445 | х |
| KJcy; | U+0040C | Ќ |
| kjcy; | U+0045C | ќ |
| Kopf; | U+1D542 | 𝕂 |
| kopf; | U+1D55C | 𝕜 |
| Kscr; | U+1D4A6 | 𝒦 |
| kscr; | U+1D4C0 | 𝓀 |
| lAarr; | U+021DA | ⇚ |
| Lacute; | U+00139 | Ĺ |
| lacute; | U+0013A | ĺ |
| laemptyv; | U+029B4 | ⦴ |
| lagran; | U+02112 | ℒ |
| Lambda; | U+0039B | Λ |
| lambda; | U+003BB | λ |
| Lang; | U+027EA | ⟪ |
| lang; | U+027E8 | ⟨ |
| langd; | U+02991 | ⦑ |
| langle; | U+027E8 | ⟨ |
| lap; | U+02A85 | ⪅ |
| Laplacetrf; | U+02112 | ℒ |
| laquo; | U+000AB | « |
| laquo | U+000AB | « |
| Larr; | U+0219E | ↞ |
| lArr; | U+021D0 | ⇐ |
| larr; | U+02190 | ← |
| larrb; | U+021E4 | ⇤ |
| larrbfs; | U+0291F | ⤟ |
| larrfs; | U+0291D | ⤝ |
| larrhk; | U+021A9 | ↩ |
| larrlp; | U+021AB | ↫ |
| larrpl; | U+02939 | ⤹ |
| larrsim; | U+02973 | ⥳ |
| larrtl; | U+021A2 | ↢ |
| lat; | U+02AAB | ⪫ |
| lAtail; | U+0291B | ⤛ |
| latail; | U+02919 | ⤙ |
| late; | U+02AAD | ⪭ |
| lates; | U+02AAD U+0FE00 | ⪭︀ |
| lBarr; | U+0290E | ⤎ |
| lbarr; | U+0290C | ⤌ |
| lbbrk; | U+02772 | ❲ |
| lbrace; | U+0007B | { |
| lbrack; | U+0005B | [ |
| lbrke; | U+0298B | ⦋ |
| lbrksld; | U+0298F | ⦏ |
| lbrkslu; | U+0298D | ⦍ |
| Lcaron; | U+0013D | Ľ |
| lcaron; | U+0013E | ľ |
| Lcedil; | U+0013B | Ļ |
| lcedil; | U+0013C | ļ |
| lceil; | U+02308 | ⌈ |
| lcub; | U+0007B | { |
| Lcy; | U+0041B | Л |
| lcy; | U+0043B | л |
| ldca; | U+02936 | ⤶ |
| ldquo; | U+0201C | “ |
| ldquor; | U+0201E | „ |
| ldrdhar; | U+02967 | ⥧ |
| ldrushar; | U+0294B | ⥋ |
| ldsh; | U+021B2 | ↲ |
| lE; | U+02266 | ≦ |
| le; | U+02264 | ≤ |
| LeftAngleBracket; | U+027E8 | ⟨ |
| LeftArrow; | U+02190 | ← |
| Leftarrow; | U+021D0 | ⇐ |
| leftarrow; | U+02190 | ← |
| LeftArrowBar; | U+021E4 | ⇤ |
| LeftArrowRightArrow; | U+021C6 | ⇆ |
| leftarrowtail; | U+021A2 | ↢ |
| LeftCeiling; | U+02308 | ⌈ |
| LeftDoubleBracket; | U+027E6 | ⟦ |
| LeftDownTeeVector; | U+02961 | ⥡ |
| LeftDownVector; | U+021C3 | ⇃ |
| LeftDownVectorBar; | U+02959 | ⥙ |
| LeftFloor; | U+0230A | ⌊ |
| leftharpoondown; | U+021BD | ↽ |
| leftharpoonup; | U+021BC | ↼ |
| leftleftarrows; | U+021C7 | ⇇ |
| LeftRightArrow; | U+02194 | ↔ |
| Leftrightarrow; | U+021D4 | ⇔ |
| leftrightarrow; | U+02194 | ↔ |
| leftrightarrows; | U+021C6 | ⇆ |
| leftrightharpoons; | U+021CB | ⇋ |
| leftrightsquigarrow; | U+021AD | ↭ |
| LeftRightVector; | U+0294E | ⥎ |
| LeftTee; | U+022A3 | ⊣ |
| LeftTeeArrow; | U+021A4 | ↤ |
| LeftTeeVector; | U+0295A | ⥚ |
| leftthreetimes; | U+022CB | ⋋ |
| LeftTriangle; | U+022B2 | ⊲ |
| LeftTriangleBar; | U+029CF | ⧏ |
| LeftTriangleEqual; | U+022B4 | ⊴ |
| LeftUpDownVector; | U+02951 | ⥑ |
| LeftUpTeeVector; | U+02960 | ⥠ |
| LeftUpVector; | U+021BF | ↿ |
| LeftUpVectorBar; | U+02958 | ⥘ |
| LeftVector; | U+021BC | ↼ |
| LeftVectorBar; | U+02952 | ⥒ |
| lEg; | U+02A8B | ⪋ |
| leg; | U+022DA | ⋚ |
| leq; | U+02264 | ≤ |
| leqq; | U+02266 | ≦ |
| leqslant; | U+02A7D | ⩽ |
| les; | U+02A7D | ⩽ |
| lescc; | U+02AA8 | ⪨ |
| lesdot; | U+02A7F | ⩿ |
| lesdoto; | U+02A81 | ⪁ |
| lesdotor; | U+02A83 | ⪃ |
| lesg; | U+022DA U+0FE00 | ⋚︀ |
| lesges; | U+02A93 | ⪓ |
| lessapprox; | U+02A85 | ⪅ |
| lessdot; | U+022D6 | ⋖ |
| lesseqgtr; | U+022DA | ⋚ |
| lesseqqgtr; | U+02A8B | ⪋ |
| LessEqualGreater; | U+022DA | ⋚ |
| LessFullEqual; | U+02266 | ≦ |
| LessGreater; | U+02276 | ≶ |
| lessgtr; | U+02276 | ≶ |
| LessLess; | U+02AA1 | ⪡ |
| lesssim; | U+02272 | ≲ |
| LessSlantEqual; | U+02A7D | ⩽ |
| LessTilde; | U+02272 | ≲ |
| lfisht; | U+0297C | ⥼ |
| lfloor; | U+0230A | ⌊ |
| Lfr; | U+1D50F | 𝔏 |
| lfr; | U+1D529 | 𝔩 |
| lg; | U+02276 | ≶ |
| lgE; | U+02A91 | ⪑ |
| lHar; | U+02962 | ⥢ |
| lhard; | U+021BD | ↽ |
| lharu; | U+021BC | ↼ |
| lharul; | U+0296A | ⥪ |
| lhblk; | U+02584 | ▄ |
| LJcy; | U+00409 | Љ |
| ljcy; | U+00459 | љ |
| Ll; | U+022D8 | ⋘ |
| ll; | U+0226A | ≪ |
| llarr; | U+021C7 | ⇇ |
| llcorner; | U+0231E | ⌞ |
| Lleftarrow; | U+021DA | ⇚ |
| llhard; | U+0296B | ⥫ |
| lltri; | U+025FA | ◺ |
| Lmidot; | U+0013F | Ŀ |
| lmidot; | U+00140 | ŀ |
| lmoust; | U+023B0 | ⎰ |
| lmoustache; | U+023B0 | ⎰ |
| lnap; | U+02A89 | ⪉ |
| lnapprox; | U+02A89 | ⪉ |
| lnE; | U+02268 | ≨ |
| lne; | U+02A87 | ⪇ |
| lneq; | U+02A87 | ⪇ |
| lneqq; | U+02268 | ≨ |
| lnsim; | U+022E6 | ⋦ |
| loang; | U+027EC | ⟬ |
| loarr; | U+021FD | ⇽ |
| lobrk; | U+027E6 | ⟦ |
| LongLeftArrow; | U+027F5 | ⟵ |
| Longleftarrow; | U+027F8 | ⟸ |
| longleftarrow; | U+027F5 | ⟵ |
| LongLeftRightArrow; | U+027F7 | ⟷ |
| Longleftrightarrow; | U+027FA | ⟺ |
| longleftrightarrow; | U+027F7 | ⟷ |
| longmapsto; | U+027FC | ⟼ |
| LongRightArrow; | U+027F6 | ⟶ |
| Longrightarrow; | U+027F9 | ⟹ |
| longrightarrow; | U+027F6 | ⟶ |
| looparrowleft; | U+021AB | ↫ |
| looparrowright; | U+021AC | ↬ |
| lopar; | U+02985 | ⦅ |
| Lopf; | U+1D543 | 𝕃 |
| lopf; | U+1D55D | 𝕝 |
| loplus; | U+02A2D | ⨭ |
| lotimes; | U+02A34 | ⨴ |
| lowast; | U+02217 | ∗ |
| lowbar; | U+0005F | _ |
| LowerLeftArrow; | U+02199 | ↙ |
| LowerRightArrow; | U+02198 | ↘ |
| loz; | U+025CA | ◊ |
| lozenge; | U+025CA | ◊ |
| lozf; | U+029EB | ⧫ |
| lpar; | U+00028 | ( |
| lparlt; | U+02993 | ⦓ |
| lrarr; | U+021C6 | ⇆ |
| lrcorner; | U+0231F | ⌟ |
| lrhar; | U+021CB | ⇋ |
| lrhard; | U+0296D | ⥭ |
| lrm; | U+0200E | |
| lrtri; | U+022BF | ⊿ |
| lsaquo; | U+02039 | ‹ |
| Lscr; | U+02112 | ℒ |
| lscr; | U+1D4C1 | 𝓁 |
| Lsh; | U+021B0 | ↰ |
| lsh; | U+021B0 | ↰ |
| lsim; | U+02272 | ≲ |
| lsime; | U+02A8D | ⪍ |
| lsimg; | U+02A8F | ⪏ |
| lsqb; | U+0005B | [ |
| lsquo; | U+02018 | ‘ |
| lsquor; | U+0201A | ‚ |
| Lstrok; | U+00141 | Ł |
| lstrok; | U+00142 | ł |
| LT; | U+0003C | < |
| LT | U+0003C | < |
| Lt; | U+0226A | ≪ |
| lt; | U+0003C | < |
| lt | U+0003C | < |
| ltcc; | U+02AA6 | ⪦ |
| ltcir; | U+02A79 | ⩹ |
| ltdot; | U+022D6 | ⋖ |
| lthree; | U+022CB | ⋋ |
| ltimes; | U+022C9 | ⋉ |
| ltlarr; | U+02976 | ⥶ |
| ltquest; | U+02A7B | ⩻ |
| ltri; | U+025C3 | ◃ |
| ltrie; | U+022B4 | ⊴ |
| ltrif; | U+025C2 | ◂ |
| ltrPar; | U+02996 | ⦖ |
| lurdshar; | U+0294A | ⥊ |
| luruhar; | U+02966 | ⥦ |
| lvertneqq; | U+02268 U+0FE00 | ≨︀ |
| lvnE; | U+02268 U+0FE00 | ≨︀ |
| macr; | U+000AF | ¯ |
| macr | U+000AF | ¯ |
| male; | U+02642 | ♂ |
| malt; | U+02720 | ✠ |
| maltese; | U+02720 | ✠ |
| Map; | U+02905 | ⤅ |
| map; | U+021A6 | ↦ |
| mapsto; | U+021A6 | ↦ |
| mapstodown; | U+021A7 | ↧ |
| mapstoleft; | U+021A4 | ↤ |
| mapstoup; | U+021A5 | ↥ |
| marker; | U+025AE | ▮ |
| mcomma; | U+02A29 | ⨩ |
| Mcy; | U+0041C | М |
| mcy; | U+0043C | м |
| mdash; | U+02014 | — |
| mDDot; | U+0223A | ∺ |
| measuredangle; | U+02221 | ∡ |
| MediumSpace; | U+0205F | |
| Mellintrf; | U+02133 | ℳ |
| Mfr; | U+1D510 | 𝔐 |
| mfr; | U+1D52A | 𝔪 |
| mho; | U+02127 | ℧ |
| micro; | U+000B5 | µ |
| micro | U+000B5 | µ |
| mid; | U+02223 | ∣ |
| midast; | U+0002A | * |
| midcir; | U+02AF0 | ⫰ |
| middot; | U+000B7 | · |
| middot | U+000B7 | · |
| minus; | U+02212 | − |
| minusb; | U+0229F | ⊟ |
| minusd; | U+02238 | ∸ |
| minusdu; | U+02A2A | ⨪ |
| MinusPlus; | U+02213 | ∓ |
| mlcp; | U+02ADB | ⫛ |
| mldr; | U+02026 | … |
| mnplus; | U+02213 | ∓ |
| models; | U+022A7 | ⊧ |
| Mopf; | U+1D544 | 𝕄 |
| mopf; | U+1D55E | 𝕞 |
| mp; | U+02213 | ∓ |
| Mscr; | U+02133 | ℳ |
| mscr; | U+1D4C2 | 𝓂 |
| mstpos; | U+0223E | ∾ |
| Mu; | U+0039C | Μ |
| mu; | U+003BC | μ |
| multimap; | U+022B8 | ⊸ |
| mumap; | U+022B8 | ⊸ |
| nabla; | U+02207 | ∇ |
| Nacute; | U+00143 | Ń |
| nacute; | U+00144 | ń |
| nang; | U+02220 U+020D2 | ∠⃒ |
| nap; | U+02249 | ≉ |
| napE; | U+02A70 U+00338 | ⩰̸ |
| napid; | U+0224B U+00338 | ≋̸ |
| napos; | U+00149 | ʼn |
| napprox; | U+02249 | ≉ |
| natur; | U+0266E | ♮ |
| natural; | U+0266E | ♮ |
| naturals; | U+02115 | ℕ |
| nbsp; | U+000A0 | |
| nbsp | U+000A0 | |
| nbump; | U+0224E U+00338 | ≎̸ |
| nbumpe; | U+0224F U+00338 | ≏̸ |
| ncap; | U+02A43 | ⩃ |
| Ncaron; | U+00147 | Ň |
| ncaron; | U+00148 | ň |
| Ncedil; | U+00145 | Ņ |
| ncedil; | U+00146 | ņ |
| ncong; | U+02247 | ≇ |
| ncongdot; | U+02A6D U+00338 | ⩭̸ |
| ncup; | U+02A42 | ⩂ |
| Ncy; | U+0041D | Н |
| ncy; | U+0043D | н |
| ndash; | U+02013 | – |
| ne; | U+02260 | ≠ |
| nearhk; | U+02924 | ⤤ |
| neArr; | U+021D7 | ⇗ |
| nearr; | U+02197 | ↗ |
| nearrow; | U+02197 | ↗ |
| nedot; | U+02250 U+00338 | ≐̸ |
| NegativeMediumSpace; | U+0200B | |
| NegativeThickSpace; | U+0200B | |
| NegativeThinSpace; | U+0200B | |
| NegativeVeryThinSpace; | U+0200B | |
| nequiv; | U+02262 | ≢ |
| nesear; | U+02928 | ⤨ |
| nesim; | U+02242 U+00338 | ≂̸ |
| NestedGreaterGreater; | U+0226B | ≫ |
| NestedLessLess; | U+0226A | ≪ |
| NewLine; | U+0000A | ␊ |
| nexist; | U+02204 | ∄ |
| nexists; | U+02204 | ∄ |
| Nfr; | U+1D511 | 𝔑 |
| nfr; | U+1D52B | 𝔫 |
| ngE; | U+02267 U+00338 | ≧̸ |
| nge; | U+02271 | ≱ |
| ngeq; | U+02271 | ≱ |
| ngeqq; | U+02267 U+00338 | ≧̸ |
| ngeqslant; | U+02A7E U+00338 | ⩾̸ |
| nges; | U+02A7E U+00338 | ⩾̸ |
| nGg; | U+022D9 U+00338 | ⋙̸ |
| ngsim; | U+02275 | ≵ |
| nGt; | U+0226B U+020D2 | ≫⃒ |
| ngt; | U+0226F | ≯ |
| ngtr; | U+0226F | ≯ |
| nGtv; | U+0226B U+00338 | ≫̸ |
| nhArr; | U+021CE | ⇎ |
| nharr; | U+021AE | ↮ |
| nhpar; | U+02AF2 | ⫲ |
| ni; | U+0220B | ∋ |
| nis; | U+022FC | ⋼ |
| nisd; | U+022FA | ⋺ |
| niv; | U+0220B | ∋ |
| NJcy; | U+0040A | Њ |
| njcy; | U+0045A | њ |
| nlArr; | U+021CD | ⇍ |
| nlarr; | U+0219A | ↚ |
| nldr; | U+02025 | ‥ |
| nlE; | U+02266 U+00338 | ≦̸ |
| nle; | U+02270 | ≰ |
| nLeftarrow; | U+021CD | ⇍ |
| nleftarrow; | U+0219A | ↚ |
| nLeftrightarrow; | U+021CE | ⇎ |
| nleftrightarrow; | U+021AE | ↮ |
| nleq; | U+02270 | ≰ |
| nleqq; | U+02266 U+00338 | ≦̸ |
| nleqslant; | U+02A7D U+00338 | ⩽̸ |
| nles; | U+02A7D U+00338 | ⩽̸ |
| nless; | U+0226E | ≮ |
| nLl; | U+022D8 U+00338 | ⋘̸ |
| nlsim; | U+02274 | ≴ |
| nLt; | U+0226A U+020D2 | ≪⃒ |
| nlt; | U+0226E | ≮ |
| nltri; | U+022EA | ⋪ |
| nltrie; | U+022EC | ⋬ |
| nLtv; | U+0226A U+00338 | ≪̸ |
| nmid; | U+02224 | ∤ |
| NoBreak; | U+02060 | |
| NonBreakingSpace; | U+000A0 | |
| Nopf; | U+02115 | ℕ |
| nopf; | U+1D55F | 𝕟 |
| Not; | U+02AEC | ⫬ |
| not; | U+000AC | ¬ |
| not | U+000AC | ¬ |
| NotCongruent; | U+02262 | ≢ |
| NotCupCap; | U+0226D | ≭ |
| NotDoubleVerticalBar; | U+02226 | ∦ |
| NotElement; | U+02209 | ∉ |
| NotEqual; | U+02260 | ≠ |
| NotEqualTilde; | U+02242 U+00338 | ≂̸ |
| NotExists; | U+02204 | ∄ |
| NotGreater; | U+0226F | ≯ |
| NotGreaterEqual; | U+02271 | ≱ |
| NotGreaterFullEqual; | U+02267 U+00338 | ≧̸ |
| NotGreaterGreater; | U+0226B U+00338 | ≫̸ |
| NotGreaterLess; | U+02279 | ≹ |
| NotGreaterSlantEqual; | U+02A7E U+00338 | ⩾̸ |
| NotGreaterTilde; | U+02275 | ≵ |
| NotHumpDownHump; | U+0224E U+00338 | ≎̸ |
| NotHumpEqual; | U+0224F U+00338 | ≏̸ |
| notin; | U+02209 | ∉ |
| notindot; | U+022F5 U+00338 | ⋵̸ |
| notinE; | U+022F9 U+00338 | ⋹̸ |
| notinva; | U+02209 | ∉ |
| notinvb; | U+022F7 | ⋷ |
| notinvc; | U+022F6 | ⋶ |
| NotLeftTriangle; | U+022EA | ⋪ |
| NotLeftTriangleBar; | U+029CF U+00338 | ⧏̸ |
| NotLeftTriangleEqual; | U+022EC | ⋬ |
| NotLess; | U+0226E | ≮ |
| NotLessEqual; | U+02270 | ≰ |
| NotLessGreater; | U+02278 | ≸ |
| NotLessLess; | U+0226A U+00338 | ≪̸ |
| NotLessSlantEqual; | U+02A7D U+00338 | ⩽̸ |
| NotLessTilde; | U+02274 | ≴ |
| NotNestedGreaterGreater; | U+02AA2 U+00338 | ⪢̸ |
| NotNestedLessLess; | U+02AA1 U+00338 | ⪡̸ |
| notni; | U+0220C | ∌ |
| notniva; | U+0220C | ∌ |
| notnivb; | U+022FE | ⋾ |
| notnivc; | U+022FD | ⋽ |
| NotPrecedes; | U+02280 | ⊀ |
| NotPrecedesEqual; | U+02AAF U+00338 | ⪯̸ |
| NotPrecedesSlantEqual; | U+022E0 | ⋠ |
| NotReverseElement; | U+0220C | ∌ |
| NotRightTriangle; | U+022EB | ⋫ |
| NotRightTriangleBar; | U+029D0 U+00338 | ⧐̸ |
| NotRightTriangleEqual; | U+022ED | ⋭ |
| NotSquareSubset; | U+0228F U+00338 | ⊏̸ |
| NotSquareSubsetEqual; | U+022E2 | ⋢ |
| NotSquareSuperset; | U+02290 U+00338 | ⊐̸ |
| NotSquareSupersetEqual; | U+022E3 | ⋣ |
| NotSubset; | U+02282 U+020D2 | ⊂⃒ |
| NotSubsetEqual; | U+02288 | ⊈ |
| NotSucceeds; | U+02281 | ⊁ |
| NotSucceedsEqual; | U+02AB0 U+00338 | ⪰̸ |
| NotSucceedsSlantEqual; | U+022E1 | ⋡ |
| NotSucceedsTilde; | U+0227F U+00338 | ≿̸ |
| NotSuperset; | U+02283 U+020D2 | ⊃⃒ |
| NotSupersetEqual; | U+02289 | ⊉ |
| NotTilde; | U+02241 | ≁ |
| NotTildeEqual; | U+02244 | ≄ |
| NotTildeFullEqual; | U+02247 | ≇ |
| NotTildeTilde; | U+02249 | ≉ |
| NotVerticalBar; | U+02224 | ∤ |
| npar; | U+02226 | ∦ |
| nparallel; | U+02226 | ∦ |
| nparsl; | U+02AFD U+020E5 | ⫽⃥ |
| npart; | U+02202 U+00338 | ∂̸ |
| npolint; | U+02A14 | ⨔ |
| npr; | U+02280 | ⊀ |
| nprcue; | U+022E0 | ⋠ |
| npre; | U+02AAF U+00338 | ⪯̸ |
| nprec; | U+02280 | ⊀ |
| npreceq; | U+02AAF U+00338 | ⪯̸ |
| nrArr; | U+021CF | ⇏ |
| nrarr; | U+0219B | ↛ |
| nrarrc; | U+02933 U+00338 | ⤳̸ |
| nrarrw; | U+0219D U+00338 | ↝̸ |
| nRightarrow; | U+021CF | ⇏ |
| nrightarrow; | U+0219B | ↛ |
| nrtri; | U+022EB | ⋫ |
| nrtrie; | U+022ED | ⋭ |
| nsc; | U+02281 | ⊁ |
| nsccue; | U+022E1 | ⋡ |
| nsce; | U+02AB0 U+00338 | ⪰̸ |
| Nscr; | U+1D4A9 | 𝒩 |
| nscr; | U+1D4C3 | 𝓃 |
| nshortmid; | U+02224 | ∤ |
| nshortparallel; | U+02226 | ∦ |
| nsim; | U+02241 | ≁ |
| nsime; | U+02244 | ≄ |
| nsimeq; | U+02244 | ≄ |
| nsmid; | U+02224 | ∤ |
| nspar; | U+02226 | ∦ |
| nsqsube; | U+022E2 | ⋢ |
| nsqsupe; | U+022E3 | ⋣ |
| nsub; | U+02284 | ⊄ |
| nsubE; | U+02AC5 U+00338 | ⫅̸ |
| nsube; | U+02288 | ⊈ |
| nsubset; | U+02282 U+020D2 | ⊂⃒ |
| nsubseteq; | U+02288 | ⊈ |
| nsubseteqq; | U+02AC5 U+00338 | ⫅̸ |
| nsucc; | U+02281 | ⊁ |
| nsucceq; | U+02AB0 U+00338 | ⪰̸ |
| nsup; | U+02285 | ⊅ |
| nsupE; | U+02AC6 U+00338 | ⫆̸ |
| nsupe; | U+02289 | ⊉ |
| nsupset; | U+02283 U+020D2 | ⊃⃒ |
| nsupseteq; | U+02289 | ⊉ |
| nsupseteqq; | U+02AC6 U+00338 | ⫆̸ |
| ntgl; | U+02279 | ≹ |
| Ntilde; | U+000D1 | Ñ |
| Ntilde | U+000D1 | Ñ |
| ntilde; | U+000F1 | ñ |
| ntilde | U+000F1 | ñ |
| ntlg; | U+02278 | ≸ |
| ntriangleleft; | U+022EA | ⋪ |
| ntrianglelefteq; | U+022EC | ⋬ |
| ntriangleright; | U+022EB | ⋫ |
| ntrianglerighteq; | U+022ED | ⋭ |
| Nu; | U+0039D | Ν |
| nu; | U+003BD | ν |
| num; | U+00023 | # |
| numero; | U+02116 | № |
| numsp; | U+02007 | |
| nvap; | U+0224D U+020D2 | ≍⃒ |
| nVDash; | U+022AF | ⊯ |
| nVdash; | U+022AE | ⊮ |
| nvDash; | U+022AD | ⊭ |
| nvdash; | U+022AC | ⊬ |
| nvge; | U+02265 U+020D2 | ≥⃒ |
| nvgt; | U+0003E U+020D2 | >⃒ |
| nvHarr; | U+02904 | ⤄ |
| nvinfin; | U+029DE | ⧞ |
| nvlArr; | U+02902 | ⤂ |
| nvle; | U+02264 U+020D2 | ≤⃒ |
| nvlt; | U+0003C U+020D2 | <⃒ |
| nvltrie; | U+022B4 U+020D2 | ⊴⃒ |
| nvrArr; | U+02903 | ⤃ |
| nvrtrie; | U+022B5 U+020D2 | ⊵⃒ |
| nvsim; | U+0223C U+020D2 | ∼⃒ |
| nwarhk; | U+02923 | ⤣ |
| nwArr; | U+021D6 | ⇖ |
| nwarr; | U+02196 | ↖ |
| nwarrow; | U+02196 | ↖ |
| nwnear; | U+02927 | ⤧ |
| Oacute; | U+000D3 | Ó |
| Oacute | U+000D3 | Ó |
| oacute; | U+000F3 | ó |
| oacute | U+000F3 | ó |
| oast; | U+0229B | ⊛ |
| ocir; | U+0229A | ⊚ |
| Ocirc; | U+000D4 | Ô |
| Ocirc | U+000D4 | Ô |
| ocirc; | U+000F4 | ô |
| ocirc | U+000F4 | ô |
| Ocy; | U+0041E | О |
| ocy; | U+0043E | о |
| odash; | U+0229D | ⊝ |
| Odblac; | U+00150 | Ő |
| odblac; | U+00151 | ő |
| odiv; | U+02A38 | ⨸ |
| odot; | U+02299 | ⊙ |
| odsold; | U+029BC | ⦼ |
| OElig; | U+00152 | Œ |
| oelig; | U+00153 | œ |
| ofcir; | U+029BF | ⦿ |
| Ofr; | U+1D512 | 𝔒 |
| ofr; | U+1D52C | 𝔬 |
| ogon; | U+002DB | ˛ |
| Ograve; | U+000D2 | Ò |
| Ograve | U+000D2 | Ò |
| ograve; | U+000F2 | ò |
| ograve | U+000F2 | ò |
| ogt; | U+029C1 | ⧁ |
| ohbar; | U+029B5 | ⦵ |
| ohm; | U+003A9 | Ω |
| oint; | U+0222E | ∮ |
| olarr; | U+021BA | ↺ |
| olcir; | U+029BE | ⦾ |
| olcross; | U+029BB | ⦻ |
| oline; | U+0203E | ‾ |
| olt; | U+029C0 | ⧀ |
| Omacr; | U+0014C | Ō |
| omacr; | U+0014D | ō |
| Omega; | U+003A9 | Ω |
| omega; | U+003C9 | ω |
| Omicron; | U+0039F | Ο |
| omicron; | U+003BF | ο |
| omid; | U+029B6 | ⦶ |
| ominus; | U+02296 | ⊖ |
| Oopf; | U+1D546 | 𝕆 |
| oopf; | U+1D560 | 𝕠 |
| opar; | U+029B7 | ⦷ |
| OpenCurlyDoubleQuote; | U+0201C | “ |
| OpenCurlyQuote; | U+02018 | ‘ |
| operp; | U+029B9 | ⦹ |
| oplus; | U+02295 | ⊕ |
| Or; | U+02A54 | ⩔ |
| or; | U+02228 | ∨ |
| orarr; | U+021BB | ↻ |
| ord; | U+02A5D | ⩝ |
| order; | U+02134 | ℴ |
| orderof; | U+02134 | ℴ |
| ordf; | U+000AA | ª |
| ordf | U+000AA | ª |
| ordm; | U+000BA | º |
| ordm | U+000BA | º |
| origof; | U+022B6 | ⊶ |
| oror; | U+02A56 | ⩖ |
| orslope; | U+02A57 | ⩗ |
| orv; | U+02A5B | ⩛ |
| oS; | U+024C8 | Ⓢ |
| Oscr; | U+1D4AA | 𝒪 |
| oscr; | U+02134 | ℴ |
| Oslash; | U+000D8 | Ø |
| Oslash | U+000D8 | Ø |
| oslash; | U+000F8 | ø |
| oslash | U+000F8 | ø |
| osol; | U+02298 | ⊘ |
| Otilde; | U+000D5 | Õ |
| Otilde | U+000D5 | Õ |
| otilde; | U+000F5 | õ |
| otilde | U+000F5 | õ |
| Otimes; | U+02A37 | ⨷ |
| otimes; | U+02297 | ⊗ |
| otimesas; | U+02A36 | ⨶ |
| Ouml; | U+000D6 | Ö |
| Ouml | U+000D6 | Ö |
| ouml; | U+000F6 | ö |
| ouml | U+000F6 | ö |
| ovbar; | U+0233D | ⌽ |
| OverBar; | U+0203E | ‾ |
| OverBrace; | U+023DE | ⏞ |
| OverBracket; | U+023B4 | ⎴ |
| OverParenthesis; | U+023DC | ⏜ |
| par; | U+02225 | ∥ |
| para; | U+000B6 | ¶ |
| para | U+000B6 | ¶ |
| parallel; | U+02225 | ∥ |
| parsim; | U+02AF3 | ⫳ |
| parsl; | U+02AFD | ⫽ |
| part; | U+02202 | ∂ |
| PartialD; | U+02202 | ∂ |
| Pcy; | U+0041F | П |
| pcy; | U+0043F | п |
| percnt; | U+00025 | % |
| period; | U+0002E | . |
| permil; | U+02030 | ‰ |
| perp; | U+022A5 | ⊥ |
| pertenk; | U+02031 | ‱ |
| Pfr; | U+1D513 | 𝔓 |
| pfr; | U+1D52D | 𝔭 |
| Phi; | U+003A6 | Φ |
| phi; | U+003C6 | φ |
| phiv; | U+003D5 | ϕ |
| phmmat; | U+02133 | ℳ |
| phone; | U+0260E | ☎ |
| Pi; | U+003A0 | Π |
| pi; | U+003C0 | π |
| pitchfork; | U+022D4 | ⋔ |
| piv; | U+003D6 | ϖ |
| planck; | U+0210F | ℏ |
| planckh; | U+0210E | ℎ |
| plankv; | U+0210F | ℏ |
| plus; | U+0002B | + |
| plusacir; | U+02A23 | ⨣ |
| plusb; | U+0229E | ⊞ |
| pluscir; | U+02A22 | ⨢ |
| plusdo; | U+02214 | ∔ |
| plusdu; | U+02A25 | ⨥ |
| pluse; | U+02A72 | ⩲ |
| PlusMinus; | U+000B1 | ± |
| plusmn; | U+000B1 | ± |
| plusmn | U+000B1 | ± |
| plussim; | U+02A26 | ⨦ |
| plustwo; | U+02A27 | ⨧ |
| pm; | U+000B1 | ± |
| Poincareplane; | U+0210C | ℌ |
| pointint; | U+02A15 | ⨕ |
| Popf; | U+02119 | ℙ |
| popf; | U+1D561 | 𝕡 |
| pound; | U+000A3 | £ |
| pound | U+000A3 | £ |
| Pr; | U+02ABB | ⪻ |
| pr; | U+0227A | ≺ |
| prap; | U+02AB7 | ⪷ |
| prcue; | U+0227C | ≼ |
| prE; | U+02AB3 | ⪳ |
| pre; | U+02AAF | ⪯ |
| prec; | U+0227A | ≺ |
| precapprox; | U+02AB7 | ⪷ |
| preccurlyeq; | U+0227C | ≼ |
| Precedes; | U+0227A | ≺ |
| PrecedesEqual; | U+02AAF | ⪯ |
| PrecedesSlantEqual; | U+0227C | ≼ |
| PrecedesTilde; | U+0227E | ≾ |
| preceq; | U+02AAF | ⪯ |
| precnapprox; | U+02AB9 | ⪹ |
| precneqq; | U+02AB5 | ⪵ |
| precnsim; | U+022E8 | ⋨ |
| precsim; | U+0227E | ≾ |
| Prime; | U+02033 | ″ |
| prime; | U+02032 | ′ |
| primes; | U+02119 | ℙ |
| prnap; | U+02AB9 | ⪹ |
| prnE; | U+02AB5 | ⪵ |
| prnsim; | U+022E8 | ⋨ |
| prod; | U+0220F | ∏ |
| Product; | U+0220F | ∏ |
| profalar; | U+0232E | ⌮ |
| profline; | U+02312 | ⌒ |
| profsurf; | U+02313 | ⌓ |
| prop; | U+0221D | ∝ |
| Proportion; | U+02237 | ∷ |
| Proportional; | U+0221D | ∝ |
| propto; | U+0221D | ∝ |
| prsim; | U+0227E | ≾ |
| prurel; | U+022B0 | ⊰ |
| Pscr; | U+1D4AB | 𝒫 |
| pscr; | U+1D4C5 | 𝓅 |
| Psi; | U+003A8 | Ψ |
| psi; | U+003C8 | ψ |
| puncsp; | U+02008 | |
| Qfr; | U+1D514 | 𝔔 |
| qfr; | U+1D52E | 𝔮 |
| qint; | U+02A0C | ⨌ |
| Qopf; | U+0211A | ℚ |
| qopf; | U+1D562 | 𝕢 |
| qprime; | U+02057 | ⁗ |
| Qscr; | U+1D4AC | 𝒬 |
| qscr; | U+1D4C6 | 𝓆 |
| quaternions; | U+0210D | ℍ |
| quatint; | U+02A16 | ⨖ |
| quest; | U+0003F | ? |
| questeq; | U+0225F | ≟ |
| QUOT; | U+00022 | " |
| QUOT | U+00022 | " |
| quot; | U+00022 | " |
| quot | U+00022 | " |
| rAarr; | U+021DB | ⇛ |
| race; | U+0223D U+00331 | ∽̱ |
| Racute; | U+00154 | Ŕ |
| racute; | U+00155 | ŕ |
| radic; | U+0221A | √ |
| raemptyv; | U+029B3 | ⦳ |
| Rang; | U+027EB | ⟫ |
| rang; | U+027E9 | ⟩ |
| rangd; | U+02992 | ⦒ |
| range; | U+029A5 | ⦥ |
| rangle; | U+027E9 | ⟩ |
| raquo; | U+000BB | » |
| raquo | U+000BB | » |
| Rarr; | U+021A0 | ↠ |
| rArr; | U+021D2 | ⇒ |
| rarr; | U+02192 | → |
| rarrap; | U+02975 | ⥵ |
| rarrb; | U+021E5 | ⇥ |
| rarrbfs; | U+02920 | ⤠ |
| rarrc; | U+02933 | ⤳ |
| rarrfs; | U+0291E | ⤞ |
| rarrhk; | U+021AA | ↪ |
| rarrlp; | U+021AC | ↬ |
| rarrpl; | U+02945 | ⥅ |
| rarrsim; | U+02974 | ⥴ |
| Rarrtl; | U+02916 | ⤖ |
| rarrtl; | U+021A3 | ↣ |
| rarrw; | U+0219D | ↝ |
| rAtail; | U+0291C | ⤜ |
| ratail; | U+0291A | ⤚ |
| ratio; | U+02236 | ∶ |
| rationals; | U+0211A | ℚ |
| RBarr; | U+02910 | ⤐ |
| rBarr; | U+0290F | ⤏ |
| rbarr; | U+0290D | ⤍ |
| rbbrk; | U+02773 | ❳ |
| rbrace; | U+0007D | } |
| rbrack; | U+0005D | ] |
| rbrke; | U+0298C | ⦌ |
| rbrksld; | U+0298E | ⦎ |
| rbrkslu; | U+02990 | ⦐ |
| Rcaron; | U+00158 | Ř |
| rcaron; | U+00159 | ř |
| Rcedil; | U+00156 | Ŗ |
| rcedil; | U+00157 | ŗ |
| rceil; | U+02309 | ⌉ |
| rcub; | U+0007D | } |
| Rcy; | U+00420 | Р |
| rcy; | U+00440 | р |
| rdca; | U+02937 | ⤷ |
| rdldhar; | U+02969 | ⥩ |
| rdquo; | U+0201D | ” |
| rdquor; | U+0201D | ” |
| rdsh; | U+021B3 | ↳ |
| Re; | U+0211C | ℜ |
| real; | U+0211C | ℜ |
| realine; | U+0211B | ℛ |
| realpart; | U+0211C | ℜ |
| reals; | U+0211D | ℝ |
| rect; | U+025AD | ▭ |
| REG; | U+000AE | ® |
| REG | U+000AE | ® |
| reg; | U+000AE | ® |
| reg | U+000AE | ® |
| ReverseElement; | U+0220B | ∋ |
| ReverseEquilibrium; | U+021CB | ⇋ |
| ReverseUpEquilibrium; | U+0296F | ⥯ |
| rfisht; | U+0297D | ⥽ |
| rfloor; | U+0230B | ⌋ |
| Rfr; | U+0211C | ℜ |
| rfr; | U+1D52F | 𝔯 |
| rHar; | U+02964 | ⥤ |
| rhard; | U+021C1 | ⇁ |
| rharu; | U+021C0 | ⇀ |
| rharul; | U+0296C | ⥬ |
| Rho; | U+003A1 | Ρ |
| rho; | U+003C1 | ρ |
| rhov; | U+003F1 | ϱ |
| RightAngleBracket; | U+027E9 | ⟩ |
| RightArrow; | U+02192 | → |
| Rightarrow; | U+021D2 | ⇒ |
| rightarrow; | U+02192 | → |
| RightArrowBar; | U+021E5 | ⇥ |
| RightArrowLeftArrow; | U+021C4 | ⇄ |
| rightarrowtail; | U+021A3 | ↣ |
| RightCeiling; | U+02309 | ⌉ |
| RightDoubleBracket; | U+027E7 | ⟧ |
| RightDownTeeVector; | U+0295D | ⥝ |
| RightDownVector; | U+021C2 | ⇂ |
| RightDownVectorBar; | U+02955 | ⥕ |
| RightFloor; | U+0230B | ⌋ |
| rightharpoondown; | U+021C1 | ⇁ |
| rightharpoonup; | U+021C0 | ⇀ |
| rightleftarrows; | U+021C4 | ⇄ |
| rightleftharpoons; | U+021CC | ⇌ |
| rightrightarrows; | U+021C9 | ⇉ |
| rightsquigarrow; | U+0219D | ↝ |
| RightTee; | U+022A2 | ⊢ |
| RightTeeArrow; | U+021A6 | ↦ |
| RightTeeVector; | U+0295B | ⥛ |
| rightthreetimes; | U+022CC | ⋌ |
| RightTriangle; | U+022B3 | ⊳ |
| RightTriangleBar; | U+029D0 | ⧐ |
| RightTriangleEqual; | U+022B5 | ⊵ |
| RightUpDownVector; | U+0294F | ⥏ |
| RightUpTeeVector; | U+0295C | ⥜ |
| RightUpVector; | U+021BE | ↾ |
| RightUpVectorBar; | U+02954 | ⥔ |
| RightVector; | U+021C0 | ⇀ |
| RightVectorBar; | U+02953 | ⥓ |
| ring; | U+002DA | ˚ |
| risingdotseq; | U+02253 | ≓ |
| rlarr; | U+021C4 | ⇄ |
| rlhar; | U+021CC | ⇌ |
| rlm; | U+0200F | |
| rmoust; | U+023B1 | ⎱ |
| rmoustache; | U+023B1 | ⎱ |
| rnmid; | U+02AEE | ⫮ |
| roang; | U+027ED | ⟭ |
| roarr; | U+021FE | ⇾ |
| robrk; | U+027E7 | ⟧ |
| ropar; | U+02986 | ⦆ |
| Ropf; | U+0211D | ℝ |
| ropf; | U+1D563 | 𝕣 |
| roplus; | U+02A2E | ⨮ |
| rotimes; | U+02A35 | ⨵ |
| RoundImplies; | U+02970 | ⥰ |
| rpar; | U+00029 | ) |
| rpargt; | U+02994 | ⦔ |
| rppolint; | U+02A12 | ⨒ |
| rrarr; | U+021C9 | ⇉ |
| Rrightarrow; | U+021DB | ⇛ |
| rsaquo; | U+0203A | › |
| Rscr; | U+0211B | ℛ |
| rscr; | U+1D4C7 | 𝓇 |
| Rsh; | U+021B1 | ↱ |
| rsh; | U+021B1 | ↱ |
| rsqb; | U+0005D | ] |
| rsquo; | U+02019 | ’ |
| rsquor; | U+02019 | ’ |
| rthree; | U+022CC | ⋌ |
| rtimes; | U+022CA | ⋊ |
| rtri; | U+025B9 | ▹ |
| rtrie; | U+022B5 | ⊵ |
| rtrif; | U+025B8 | ▸ |
| rtriltri; | U+029CE | ⧎ |
| RuleDelayed; | U+029F4 | ⧴ |
| ruluhar; | U+02968 | ⥨ |
| rx; | U+0211E | ℞ |
| Sacute; | U+0015A | Ś |
| sacute; | U+0015B | ś |
| sbquo; | U+0201A | ‚ |
| Sc; | U+02ABC | ⪼ |
| sc; | U+0227B | ≻ |
| scap; | U+02AB8 | ⪸ |
| Scaron; | U+00160 | Š |
| scaron; | U+00161 | š |
| sccue; | U+0227D | ≽ |
| scE; | U+02AB4 | ⪴ |
| sce; | U+02AB0 | ⪰ |
| Scedil; | U+0015E | Ş |
| scedil; | U+0015F | ş |
| Scirc; | U+0015C | Ŝ |
| scirc; | U+0015D | ŝ |
| scnap; | U+02ABA | ⪺ |
| scnE; | U+02AB6 | ⪶ |
| scnsim; | U+022E9 | ⋩ |
| scpolint; | U+02A13 | ⨓ |
| scsim; | U+0227F | ≿ |
| Scy; | U+00421 | С |
| scy; | U+00441 | с |
| sdot; | U+022C5 | ⋅ |
| sdotb; | U+022A1 | ⊡ |
| sdote; | U+02A66 | ⩦ |
| searhk; | U+02925 | ⤥ |
| seArr; | U+021D8 | ⇘ |
| searr; | U+02198 | ↘ |
| searrow; | U+02198 | ↘ |
| sect; | U+000A7 | § |
| sect | U+000A7 | § |
| semi; | U+0003B | ; |
| seswar; | U+02929 | ⤩ |
| setminus; | U+02216 | ∖ |
| setmn; | U+02216 | ∖ |
| sext; | U+02736 | ✶ |
| Sfr; | U+1D516 | 𝔖 |
| sfr; | U+1D530 | 𝔰 |
| sfrown; | U+02322 | ⌢ |
| sharp; | U+0266F | ♯ |
| SHCHcy; | U+00429 | Щ |
| shchcy; | U+00449 | щ |
| SHcy; | U+00428 | Ш |
| shcy; | U+00448 | ш |
| ShortDownArrow; | U+02193 | ↓ |
| ShortLeftArrow; | U+02190 | ← |
| shortmid; | U+02223 | ∣ |
| shortparallel; | U+02225 | ∥ |
| ShortRightArrow; | U+02192 | → |
| ShortUpArrow; | U+02191 | ↑ |
| shy; | U+000AD | |
| shy | U+000AD | |
| Sigma; | U+003A3 | Σ |
| sigma; | U+003C3 | σ |
| sigmaf; | U+003C2 | ς |
| sigmav; | U+003C2 | ς |
| sim; | U+0223C | ∼ |
| simdot; | U+02A6A | ⩪ |
| sime; | U+02243 | ≃ |
| simeq; | U+02243 | ≃ |
| simg; | U+02A9E | ⪞ |
| simgE; | U+02AA0 | ⪠ |
| siml; | U+02A9D | ⪝ |
| simlE; | U+02A9F | ⪟ |
| simne; | U+02246 | ≆ |
| simplus; | U+02A24 | ⨤ |
| simrarr; | U+02972 | ⥲ |
| slarr; | U+02190 | ← |
| SmallCircle; | U+02218 | ∘ |
| smallsetminus; | U+02216 | ∖ |
| smashp; | U+02A33 | ⨳ |
| smeparsl; | U+029E4 | ⧤ |
| smid; | U+02223 | ∣ |
| smile; | U+02323 | ⌣ |
| smt; | U+02AAA | ⪪ |
| smte; | U+02AAC | ⪬ |
| smtes; | U+02AAC U+0FE00 | ⪬︀ |
| SOFTcy; | U+0042C | Ь |
| softcy; | U+0044C | ь |
| sol; | U+0002F | / |
| solb; | U+029C4 | ⧄ |
| solbar; | U+0233F | ⌿ |
| Sopf; | U+1D54A | 𝕊 |
| sopf; | U+1D564 | 𝕤 |
| spades; | U+02660 | ♠ |
| spadesuit; | U+02660 | ♠ |
| spar; | U+02225 | ∥ |
| sqcap; | U+02293 | ⊓ |
| sqcaps; | U+02293 U+0FE00 | ⊓︀ |
| sqcup; | U+02294 | ⊔ |
| sqcups; | U+02294 U+0FE00 | ⊔︀ |
| Sqrt; | U+0221A | √ |
| sqsub; | U+0228F | ⊏ |
| sqsube; | U+02291 | ⊑ |
| sqsubset; | U+0228F | ⊏ |
| sqsubseteq; | U+02291 | ⊑ |
| sqsup; | U+02290 | ⊐ |
| sqsupe; | U+02292 | ⊒ |
| sqsupset; | U+02290 | ⊐ |
| sqsupseteq; | U+02292 | ⊒ |
| squ; | U+025A1 | □ |
| Square; | U+025A1 | □ |
| square; | U+025A1 | □ |
| SquareIntersection; | U+02293 | ⊓ |
| SquareSubset; | U+0228F | ⊏ |
| SquareSubsetEqual; | U+02291 | ⊑ |
| SquareSuperset; | U+02290 | ⊐ |
| SquareSupersetEqual; | U+02292 | ⊒ |
| SquareUnion; | U+02294 | ⊔ |
| squarf; | U+025AA | ▪ |
| squf; | U+025AA | ▪ |
| srarr; | U+02192 | → |
| Sscr; | U+1D4AE | 𝒮 |
| sscr; | U+1D4C8 | 𝓈 |
| ssetmn; | U+02216 | ∖ |
| ssmile; | U+02323 | ⌣ |
| sstarf; | U+022C6 | ⋆ |
| Star; | U+022C6 | ⋆ |
| star; | U+02606 | ☆ |
| starf; | U+02605 | ★ |
| straightepsilon; | U+003F5 | ϵ |
| straightphi; | U+003D5 | ϕ |
| strns; | U+000AF | ¯ |
| Sub; | U+022D0 | ⋐ |
| sub; | U+02282 | ⊂ |
| subdot; | U+02ABD | ⪽ |
| subE; | U+02AC5 | ⫅ |
| sube; | U+02286 | ⊆ |
| subedot; | U+02AC3 | ⫃ |
| submult; | U+02AC1 | ⫁ |
| subnE; | U+02ACB | ⫋ |
| subne; | U+0228A | ⊊ |
| subplus; | U+02ABF | ⪿ |
| subrarr; | U+02979 | ⥹ |
| Subset; | U+022D0 | ⋐ |
| subset; | U+02282 | ⊂ |
| subseteq; | U+02286 | ⊆ |
| subseteqq; | U+02AC5 | ⫅ |
| SubsetEqual; | U+02286 | ⊆ |
| subsetneq; | U+0228A | ⊊ |
| subsetneqq; | U+02ACB | ⫋ |
| subsim; | U+02AC7 | ⫇ |
| subsub; | U+02AD5 | ⫕ |
| subsup; | U+02AD3 | ⫓ |
| succ; | U+0227B | ≻ |
| succapprox; | U+02AB8 | ⪸ |
| succcurlyeq; | U+0227D | ≽ |
| Succeeds; | U+0227B | ≻ |
| SucceedsEqual; | U+02AB0 | ⪰ |
| SucceedsSlantEqual; | U+0227D | ≽ |
| SucceedsTilde; | U+0227F | ≿ |
| succeq; | U+02AB0 | ⪰ |
| succnapprox; | U+02ABA | ⪺ |
| succneqq; | U+02AB6 | ⪶ |
| succnsim; | U+022E9 | ⋩ |
| succsim; | U+0227F | ≿ |
| SuchThat; | U+0220B | ∋ |
| Sum; | U+02211 | ∑ |
| sum; | U+02211 | ∑ |
| sung; | U+0266A | ♪ |
| Sup; | U+022D1 | ⋑ |
| sup; | U+02283 | ⊃ |
| sup1; | U+000B9 | ¹ |
| sup1 | U+000B9 | ¹ |
| sup2; | U+000B2 | ² |
| sup2 | U+000B2 | ² |
| sup3; | U+000B3 | ³ |
| sup3 | U+000B3 | ³ |
| supdot; | U+02ABE | ⪾ |
| supdsub; | U+02AD8 | ⫘ |
| supE; | U+02AC6 | ⫆ |
| supe; | U+02287 | ⊇ |
| supedot; | U+02AC4 | ⫄ |
| Superset; | U+02283 | ⊃ |
| SupersetEqual; | U+02287 | ⊇ |
| suphsol; | U+027C9 | ⟉ |
| suphsub; | U+02AD7 | ⫗ |
| suplarr; | U+0297B | ⥻ |
| supmult; | U+02AC2 | ⫂ |
| supnE; | U+02ACC | ⫌ |
| supne; | U+0228B | ⊋ |
| supplus; | U+02AC0 | ⫀ |
| Supset; | U+022D1 | ⋑ |
| supset; | U+02283 | ⊃ |
| supseteq; | U+02287 | ⊇ |
| supseteqq; | U+02AC6 | ⫆ |
| supsetneq; | U+0228B | ⊋ |
| supsetneqq; | U+02ACC | ⫌ |
| supsim; | U+02AC8 | ⫈ |
| supsub; | U+02AD4 | ⫔ |
| supsup; | U+02AD6 | ⫖ |
| swarhk; | U+02926 | ⤦ |
| swArr; | U+021D9 | ⇙ |
| swarr; | U+02199 | ↙ |
| swarrow; | U+02199 | ↙ |
| swnwar; | U+0292A | ⤪ |
| szlig; | U+000DF | ß |
| szlig | U+000DF | ß |
| Tab; | U+00009 | ␉ |
| target; | U+02316 | ⌖ |
| Tau; | U+003A4 | Τ |
| tau; | U+003C4 | τ |
| tbrk; | U+023B4 | ⎴ |
| Tcaron; | U+00164 | Ť |
| tcaron; | U+00165 | ť |
| Tcedil; | U+00162 | Ţ |
| tcedil; | U+00163 | ţ |
| Tcy; | U+00422 | Т |
| tcy; | U+00442 | т |
| tdot; | U+020DB | ◌⃛ |
| telrec; | U+02315 | ⌕ |
| Tfr; | U+1D517 | 𝔗 |
| tfr; | U+1D531 | 𝔱 |
| there4; | U+02234 | ∴ |
| Therefore; | U+02234 | ∴ |
| therefore; | U+02234 | ∴ |
| Theta; | U+00398 | Θ |
| theta; | U+003B8 | θ |
| thetasym; | U+003D1 | ϑ |
| thetav; | U+003D1 | ϑ |
| thickapprox; | U+02248 | ≈ |
| thicksim; | U+0223C | ∼ |
| ThickSpace; | U+0205F U+0200A | |
| thinsp; | U+02009 | |
| ThinSpace; | U+02009 | |
| thkap; | U+02248 | ≈ |
| thksim; | U+0223C | ∼ |
| THORN; | U+000DE | Þ |
| THORN | U+000DE | Þ |
| thorn; | U+000FE | þ |
| thorn | U+000FE | þ |
| Tilde; | U+0223C | ∼ |
| tilde; | U+002DC | ˜ |
| TildeEqual; | U+02243 | ≃ |
| TildeFullEqual; | U+02245 | ≅ |
| TildeTilde; | U+02248 | ≈ |
| times; | U+000D7 | × |
| times | U+000D7 | × |
| timesb; | U+022A0 | ⊠ |
| timesbar; | U+02A31 | ⨱ |
| timesd; | U+02A30 | ⨰ |
| tint; | U+0222D | ∭ |
| toea; | U+02928 | ⤨ |
| top; | U+022A4 | ⊤ |
| topbot; | U+02336 | ⌶ |
| topcir; | U+02AF1 | ⫱ |
| Topf; | U+1D54B | 𝕋 |
| topf; | U+1D565 | 𝕥 |
| topfork; | U+02ADA | ⫚ |
| tosa; | U+02929 | ⤩ |
| tprime; | U+02034 | ‴ |
| TRADE; | U+02122 | ™ |
| trade; | U+02122 | ™ |
| triangle; | U+025B5 | ▵ |
| triangledown; | U+025BF | ▿ |
| triangleleft; | U+025C3 | ◃ |
| trianglelefteq; | U+022B4 | ⊴ |
| triangleq; | U+0225C | ≜ |
| triangleright; | U+025B9 | ▹ |
| trianglerighteq; | U+022B5 | ⊵ |
| tridot; | U+025EC | ◬ |
| trie; | U+0225C | ≜ |
| triminus; | U+02A3A | ⨺ |
| TripleDot; | U+020DB | ◌⃛ |
| triplus; | U+02A39 | ⨹ |
| trisb; | U+029CD | ⧍ |
| tritime; | U+02A3B | ⨻ |
| trpezium; | U+023E2 | ⏢ |
| Tscr; | U+1D4AF | 𝒯 |
| tscr; | U+1D4C9 | 𝓉 |
| TScy; | U+00426 | Ц |
| tscy; | U+00446 | ц |
| TSHcy; | U+0040B | Ћ |
| tshcy; | U+0045B | ћ |
| Tstrok; | U+00166 | Ŧ |
| tstrok; | U+00167 | ŧ |
| twixt; | U+0226C | ≬ |
| twoheadleftarrow; | U+0219E | ↞ |
| twoheadrightarrow; | U+021A0 | ↠ |
| Uacute; | U+000DA | Ú |
| Uacute | U+000DA | Ú |
| uacute; | U+000FA | ú |
| uacute | U+000FA | ú |
| Uarr; | U+0219F | ↟ |
| uArr; | U+021D1 | ⇑ |
| uarr; | U+02191 | ↑ |
| Uarrocir; | U+02949 | ⥉ |
| Ubrcy; | U+0040E | Ў |
| ubrcy; | U+0045E | ў |
| Ubreve; | U+0016C | Ŭ |
| ubreve; | U+0016D | ŭ |
| Ucirc; | U+000DB | Û |
| Ucirc | U+000DB | Û |
| ucirc; | U+000FB | û |
| ucirc | U+000FB | û |
| Ucy; | U+00423 | У |
| ucy; | U+00443 | у |
| udarr; | U+021C5 | ⇅ |
| Udblac; | U+00170 | Ű |
| udblac; | U+00171 | ű |
| udhar; | U+0296E | ⥮ |
| ufisht; | U+0297E | ⥾ |
| Ufr; | U+1D518 | 𝔘 |
| ufr; | U+1D532 | 𝔲 |
| Ugrave; | U+000D9 | Ù |
| Ugrave | U+000D9 | Ù |
| ugrave; | U+000F9 | ù |
| ugrave | U+000F9 | ù |
| uHar; | U+02963 | ⥣ |
| uharl; | U+021BF | ↿ |
| uharr; | U+021BE | ↾ |
| uhblk; | U+02580 | ▀ |
| ulcorn; | U+0231C | ⌜ |
| ulcorner; | U+0231C | ⌜ |
| ulcrop; | U+0230F | ⌏ |
| ultri; | U+025F8 | ◸ |
| Umacr; | U+0016A | Ū |
| umacr; | U+0016B | ū |
| uml; | U+000A8 | ¨ |
| uml | U+000A8 | ¨ |
| UnderBar; | U+0005F | _ |
| UnderBrace; | U+023DF | ⏟ |
| UnderBracket; | U+023B5 | ⎵ |
| UnderParenthesis; | U+023DD | ⏝ |
| Union; | U+022C3 | ⋃ |
| UnionPlus; | U+0228E | ⊎ |
| Uogon; | U+00172 | Ų |
| uogon; | U+00173 | ų |
| Uopf; | U+1D54C | 𝕌 |
| uopf; | U+1D566 | 𝕦 |
| UpArrow; | U+02191 | ↑ |
| Uparrow; | U+021D1 | ⇑ |
| uparrow; | U+02191 | ↑ |
| UpArrowBar; | U+02912 | ⤒ |
| UpArrowDownArrow; | U+021C5 | ⇅ |
| UpDownArrow; | U+02195 | ↕ |
| Updownarrow; | U+021D5 | ⇕ |
| updownarrow; | U+02195 | ↕ |
| UpEquilibrium; | U+0296E | ⥮ |
| upharpoonleft; | U+021BF | ↿ |
| upharpoonright; | U+021BE | ↾ |
| uplus; | U+0228E | ⊎ |
| UpperLeftArrow; | U+02196 | ↖ |
| UpperRightArrow; | U+02197 | ↗ |
| Upsi; | U+003D2 | ϒ |
| upsi; | U+003C5 | υ |
| upsih; | U+003D2 | ϒ |
| Upsilon; | U+003A5 | Υ |
| upsilon; | U+003C5 | υ |
| UpTee; | U+022A5 | ⊥ |
| UpTeeArrow; | U+021A5 | ↥ |
| upuparrows; | U+021C8 | ⇈ |
| urcorn; | U+0231D | ⌝ |
| urcorner; | U+0231D | ⌝ |
| urcrop; | U+0230E | ⌎ |
| Uring; | U+0016E | Ů |
| uring; | U+0016F | ů |
| urtri; | U+025F9 | ◹ |
| Uscr; | U+1D4B0 | 𝒰 |
| uscr; | U+1D4CA | 𝓊 |
| utdot; | U+022F0 | ⋰ |
| Utilde; | U+00168 | Ũ |
| utilde; | U+00169 | ũ |
| utri; | U+025B5 | ▵ |
| utrif; | U+025B4 | ▴ |
| uuarr; | U+021C8 | ⇈ |
| Uuml; | U+000DC | Ü |
| Uuml | U+000DC | Ü |
| uuml; | U+000FC | ü |
| uuml | U+000FC | ü |
| uwangle; | U+029A7 | ⦧ |
| vangrt; | U+0299C | ⦜ |
| varepsilon; | U+003F5 | ϵ |
| varkappa; | U+003F0 | ϰ |
| varnothing; | U+02205 | ∅ |
| varphi; | U+003D5 | ϕ |
| varpi; | U+003D6 | ϖ |
| varpropto; | U+0221D | ∝ |
| vArr; | U+021D5 | ⇕ |
| varr; | U+02195 | ↕ |
| varrho; | U+003F1 | ϱ |
| varsigma; | U+003C2 | ς |
| varsubsetneq; | U+0228A U+0FE00 | ⊊︀ |
| varsubsetneqq; | U+02ACB U+0FE00 | ⫋︀ |
| varsupsetneq; | U+0228B U+0FE00 | ⊋︀ |
| varsupsetneqq; | U+02ACC U+0FE00 | ⫌︀ |
| vartheta; | U+003D1 | ϑ |
| vartriangleleft; | U+022B2 | ⊲ |
| vartriangleright; | U+022B3 | ⊳ |
| Vbar; | U+02AEB | ⫫ |
| vBar; | U+02AE8 | ⫨ |
| vBarv; | U+02AE9 | ⫩ |
| Vcy; | U+00412 | В |
| vcy; | U+00432 | в |
| VDash; | U+022AB | ⊫ |
| Vdash; | U+022A9 | ⊩ |
| vDash; | U+022A8 | ⊨ |
| vdash; | U+022A2 | ⊢ |
| Vdashl; | U+02AE6 | ⫦ |
| Vee; | U+022C1 | ⋁ |
| vee; | U+02228 | ∨ |
| veebar; | U+022BB | ⊻ |
| veeeq; | U+0225A | ≚ |
| vellip; | U+022EE | ⋮ |
| Verbar; | U+02016 | ‖ |
| verbar; | U+0007C | | |
| Vert; | U+02016 | ‖ |
| vert; | U+0007C | | |
| VerticalBar; | U+02223 | ∣ |
| VerticalLine; | U+0007C | | |
| VerticalSeparator; | U+02758 | ❘ |
| VerticalTilde; | U+02240 | ≀ |
| VeryThinSpace; | U+0200A | |
| Vfr; | U+1D519 | 𝔙 |
| vfr; | U+1D533 | 𝔳 |
| vltri; | U+022B2 | ⊲ |
| vnsub; | U+02282 U+020D2 | ⊂⃒ |
| vnsup; | U+02283 U+020D2 | ⊃⃒ |
| Vopf; | U+1D54D | 𝕍 |
| vopf; | U+1D567 | 𝕧 |
| vprop; | U+0221D | ∝ |
| vrtri; | U+022B3 | ⊳ |
| Vscr; | U+1D4B1 | 𝒱 |
| vscr; | U+1D4CB | 𝓋 |
| vsubnE; | U+02ACB U+0FE00 | ⫋︀ |
| vsubne; | U+0228A U+0FE00 | ⊊︀ |
| vsupnE; | U+02ACC U+0FE00 | ⫌︀ |
| vsupne; | U+0228B U+0FE00 | ⊋︀ |
| Vvdash; | U+022AA | ⊪ |
| vzigzag; | U+0299A | ⦚ |
| Wcirc; | U+00174 | Ŵ |
| wcirc; | U+00175 | ŵ |
| wedbar; | U+02A5F | ⩟ |
| Wedge; | U+022C0 | ⋀ |
| wedge; | U+02227 | ∧ |
| wedgeq; | U+02259 | ≙ |
| weierp; | U+02118 | ℘ |
| Wfr; | U+1D51A | 𝔚 |
| wfr; | U+1D534 | 𝔴 |
| Wopf; | U+1D54E | 𝕎 |
| wopf; | U+1D568 | 𝕨 |
| wp; | U+02118 | ℘ |
| wr; | U+02240 | ≀ |
| wreath; | U+02240 | ≀ |
| Wscr; | U+1D4B2 | 𝒲 |
| wscr; | U+1D4CC | 𝓌 |
| xcap; | U+022C2 | ⋂ |
| xcirc; | U+025EF | ◯ |
| xcup; | U+022C3 | ⋃ |
| xdtri; | U+025BD | ▽ |
| Xfr; | U+1D51B | 𝔛 |
| xfr; | U+1D535 | 𝔵 |
| xhArr; | U+027FA | ⟺ |
| xharr; | U+027F7 | ⟷ |
| Xi; | U+0039E | Ξ |
| xi; | U+003BE | ξ |
| xlArr; | U+027F8 | ⟸ |
| xlarr; | U+027F5 | ⟵ |
| xmap; | U+027FC | ⟼ |
| xnis; | U+022FB | ⋻ |
| xodot; | U+02A00 | ⨀ |
| Xopf; | U+1D54F | 𝕏 |
| xopf; | U+1D569 | 𝕩 |
| xoplus; | U+02A01 | ⨁ |
| xotime; | U+02A02 | ⨂ |
| xrArr; | U+027F9 | ⟹ |
| xrarr; | U+027F6 | ⟶ |
| Xscr; | U+1D4B3 | 𝒳 |
| xscr; | U+1D4CD | 𝓍 |
| xsqcup; | U+02A06 | ⨆ |
| xuplus; | U+02A04 | ⨄ |
| xutri; | U+025B3 | △ |
| xvee; | U+022C1 | ⋁ |
| xwedge; | U+022C0 | ⋀ |
| Yacute; | U+000DD | Ý |
| Yacute | U+000DD | Ý |
| yacute; | U+000FD | ý |
| yacute | U+000FD | ý |
| YAcy; | U+0042F | Я |
| yacy; | U+0044F | я |
| Ycirc; | U+00176 | Ŷ |
| ycirc; | U+00177 | ŷ |
| Ycy; | U+0042B | Ы |
| ycy; | U+0044B | ы |
| yen; | U+000A5 | ¥ |
| yen | U+000A5 | ¥ |
| Yfr; | U+1D51C | 𝔜 |
| yfr; | U+1D536 | 𝔶 |
| YIcy; | U+00407 | Ї |
| yicy; | U+00457 | ї |
| Yopf; | U+1D550 | 𝕐 |
| yopf; | U+1D56A | 𝕪 |
| Yscr; | U+1D4B4 | 𝒴 |
| yscr; | U+1D4CE | 𝓎 |
| YUcy; | U+0042E | Ю |
| yucy; | U+0044E | ю |
| Yuml; | U+00178 | Ÿ |
| yuml; | U+000FF | ÿ |
| yuml | U+000FF | ÿ |
| Zacute; | U+00179 | Ź |
| zacute; | U+0017A | ź |
| Zcaron; | U+0017D | Ž |
| zcaron; | U+0017E | ž |
| Zcy; | U+00417 | З |
| zcy; | U+00437 | з |
| Zdot; | U+0017B | Ż |
| zdot; | U+0017C | ż |
| zeetrf; | U+02128 | ℨ |
| ZeroWidthSpace; | U+0200B | |
| Zeta; | U+00396 | Ζ |
| zeta; | U+003B6 | ζ |
| Zfr; | U+02128 | ℨ |
| zfr; | U+1D537 | 𝔷 |
| ZHcy; | U+00416 | Ж |
| zhcy; | U+00436 | ж |
| zigrarr; | U+021DD | ⇝ |
| Zopf; | U+02124 | ℤ |
| zopf; | U+1D56B | 𝕫 |
| Zscr; | U+1D4B5 | 𝒵 |
| zscr; | U+1D4CF | 𝓏 |
| zwj; | U+0200D | |
| zwnj; | U+0200C | |
This data is also available as a JSON file.
The glyphs displayed above are non-normative. Refer to Unicode for formal definitions of the characters listed above.
The character reference names originate from XML Entity Definitions for Characters, though only the above is considered normative. [XMLENTITY]
This list is static and will not be expanded or changed in the future.
← 13.2 Parsing HTML documents — Table of Contents — 14 The XML syntax →Từ khóa » Html Original Symbol
-
HTML Copyright Symbol
-
HTML Symbols - W3Schools
-
HTML Symbols, Entities And Codes — Toptal Designers
-
How To Create The Copyright Symbol In HTML - Career Karma
-
HTML Symbols Code Table
-
HTML Symbols – HTML Icon And Entity Code List - FreeCodeCamp
-
Common HTML Entities Used For Typography - W3C Wiki
-
Entities For Symbols And Greek Letters - HTML Help
-
List Of XML And HTML Character Entity References - Wikipedia
-
HTML Character Codes »
-
HTML - Wikipedia
-
HTML Color Codes
-
Registered Trademark Character: Everything You Need To Know