23.1 Chuyên đề Hệ Phương Trình Bậc Nhất Nhiều ẩml

Đại lớp 10 NC

Bài 23.1: CHUYÊN Đ

HỆ PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN

Dẫn dắt: Những buổi trước chúng ta đã tiếp cận lại các bài toán về giải phương trình. Hôm nay chúng ta sẽ ôn tập lại và mở rộng thêm về hệ phương trình nhé

Chuyên đề hệ phương trình bậc nhất nhiều ẩn

I. TÓM TẮT LÝ THUYẾT

1. Hệ hai phương trình bậc nhất hai ẩn.

a) Định nghĩa: Hệ phương trình bậc nhất hai ẩn là hệ phương trình có dạng

b)Giải và biện luận hệ hai phương trình bậc nhất hai ẩn:

Tính các định thức: , , .

Xét định thức

Kết quả

D ¹ 0

Hệ có nghiệm duy nhất

D = 0

Dx¹ 0 hoặc Dy¹ 0

Hệ vô nghiệm

Dx = Dy = 0

Hệ có vô số nghiệm

Chú ý: Để giải hệ phương trình bậc nhất hai ẩn, ba ẩn ta có thể dùng các cách giải đã biết như:phương pháp thế, phương pháp cộng đại số.

Học sinh áp dụng bảng trên để giải và biện luận nghiệm của hệ phương trình

Bài 2. Mức 2: Giải và biện luận hệ phương trình:

a) b) c)

Hướng dẫn:

a) Ta có ; .

· Với : Hệ phương trình có nghiệm duy nhất

· Với :

+ Khi ta có nên hệ phương trình có nghiệm là nghiệm của phương trình . Do đó hệ phương trình có nghiệm là .

+ Khi ta có nên hệ phương trình vô nghiệm

Kết luận:

hệ phương trình có nghiệm duy nhất

hệ phương trình có nghiệm là .

hệ phương trình vô nghiệm

b) Từ hệ phương trình ta có: ;

;

Nếu D 0 m–2 0 m 2

Suy ra hệ phương trình có một nghiệm duy nhất:

Nếu hệ phương trình vô nghiệm

c) Ta có

· Với : Hệ phương trình có nghiệm duy nhất

· Với :

+ Khi ta có nên hệ phương trình có nghiệm là nghiệm của phương trình . Do đó hệ phương trình có nghiệm là .

+ Khi ta có nên hệ phương trình vô nghiệm

Kết luận: hệ phương trình có nghiệm duy nhất

hệ phương trình có nghiệm là .

hệ phương trình vô nghiệm

Bài 4. Mức 3: Cho hệ phương trình: .

a) Tìm m để hệ có nghiệm duy nhất (x;y) thỏa mãn .

b) Tìm m để hệ có nghiệm duy nhất (x;y) sao cho nhỏ nhất .

Hướng dẫn:

Ta có: ; ;

a) Hệ có nghiệm duy nhất .

b) Hệ có nghiệm duy nhất

(1)

* thì (1) có nghiệm .

* có nghiệm .

Đẳng thức xảy ra khi .Vậy P nhỏ nhất .

Bài 5. Mức 3:Tìm các giá trị của sao cho với mọi thì hệ phương trình có nghiệm.

Hướng dẫn:

Ta có:

Suy ra thì hệ phương trình có nghiệm.

Khi , hệ trở thành: ,Hệ có nghiệm

Khi , hệ trở thành , Hệ có nghiệm

Vậy hệ có nghiệm với mọi khi và chỉ khi

2. Hệ phương trình bậc nhất nhiều ẩn

Nguyên tắc chung để giải các hệ phương trình nhiều ẩn là khử bớt ẩn để đưa về các phương trình hay hệ phương trình có số ẩn ít hơn. Để khử bớt ẩn, ta cũng có thể dùng các phương pháp cộng đại số, phương pháp thế như đối với hệ phương trình bậc nhất hai ẩn

Bài 6. Mức 2:Giải các hệ phương trình sau

a) b) c) d)

Hướng dẫn:

a)

b) c) d)

Từ khóa » Hệ Phương Trình Lớp 10 Nâng Cao