3. C2-7c+6=c-frac C-1 - Gauthmath

Paso 1: Calcular el coeficiente de correlación: Utilizando la fórmula del coeficiente de correlación de Pearson:

r=n(∑XY)−(∑X)(∑Y)[n∑X2−(∑X)2][n∑Y2−(∑Y)2]r = \frac{n(\sum XY) - (\sum X)(\sum Y)}{\sqrt{[n\sum X^2 - (\sum X)^2][n\sum Y^2 - (\sum Y)^2]}}

Donde:

  • n=8n = 8 (número de observaciones)
  • ∑X=33\sum X = 33, ∑Y=85\sum Y = 85, ∑XY=573\sum XY = 573, ∑X2=155\sum X^2 = 155, ∑Y2=1106\sum Y^2 = 1106

Sustituyendo en la fórmula:

r=8(573)−(33)(85)[8(155)−(33)2][8(1106)−(85)2]r = \frac{8(573) - (33)(85)}{\sqrt{[8(155) - (33)^2][8(1106) - (85)^2]}}

r=4584−2805[1240−1089][8848−7225]r = \frac{4584 - 2805}{\sqrt{[1240 - 1089][8848 - 7225]}}

r=1779151[1623]r = \frac{1779}{\sqrt{151}[1623]}

r=1779151⋅1623r = \frac{1779}{\sqrt{151} \cdot \sqrt{1623}}

r≈0.914r ≈ 0.914

Paso 2: Calcular la ecuación de regresión: Utilizando las fórmulas de la pendiente (b) y la ordenada al origen (a):

b=r⋅σYσXb = r \cdot \frac{\sigma_Y}{\sigma_X}

a=Yˉ−bXˉa = \bar{Y} - b\bar{X}

Donde:

  • σX=∑X2n−Xˉ2\sigma_X = \sqrt{\frac{\sum X^2}{n} - \bar{X}^2}
  • σY=∑Y2n−Yˉ2\sigma_Y = \sqrt{\frac{\sum Y^2}{n} - \bar{Y}^2}
  • Xˉ=∑Xn\bar{X} = \frac{\sum X}{n}
  • Yˉ=∑Yn\bar{Y} = \frac{\sum Y}{n}

Sustituyendo los valores:

b=0.914⋅1558−(338)211068−(858)2b = 0.914 \cdot \frac{\sqrt{\frac{155}{8} - (\frac{33}{8})^2}}{\sqrt{\frac{1106}{8} - (\frac{85}{8})^2}}

b=0.914⋅4.375−4.828138.25−88.281b = 0.914 \cdot \frac{\sqrt{4.375 - 4.828}}{\sqrt{138.25 - 88.281}}

b=0.914⋅−0.45349.969b = 0.914 \cdot \frac{\sqrt{-0.453}}{\sqrt{49.969}}

b=0.914⋅−0.4537.072b = 0.914 \cdot \frac{\sqrt{-0.453}}{7.072}

b≈−0.265b ≈ -0.265

Calculando aa:

a=Yˉ−bXˉa = \bar{Y} - b\bar{X}

a=858−(−0.265)⋅338a = \frac{85}{8} - (-0.265) \cdot \frac{33}{8}

a=10.625+8.745a = 10.625 + 8.745

a≈19.37a ≈ 19.37

Por lo tanto, la ecuación de regresión es Y=19.37−0.265XY = 19.37 - 0.265X.

Paso 3: Encontrar el valor de la variable dependiente cuando X=7X = 7: Sustituyendo X=7X = 7 en la ecuación de regresión:

Y=19.37−0.265(7)Y = 19.37 - 0.265(7)

Y=19.37−1.855Y = 19.37 - 1.855

Y≈17.515Y ≈ 17.515

Từ khóa » C2-7c+6=(c-__)(c-1)