A. Cho \(\sin X = \frac{3}{5}\) Với \(\frac{\pi }{2} < X < \pi ...
- Câu hỏi:
a. Cho \(\sin x = \frac{3}{5}\) với \(\frac{\pi }{2} < x < \pi \). Tính \(\tan \left( {x + \frac{\pi }{4}} \right)\)
b. Chứng minh: \(\sin \left( {a + \frac{\pi }{4}} \right)\sin \left( {a - \frac{\pi }{4}} \right) = - \frac{1}{2}{\rm{cos2a}}\)
Lời giải tham khảo:
a) Ta có \({\sin ^2}x + {\cos ^2}x = 1 \Rightarrow \cos x = \pm \sqrt {1 - {{\sin }^2}x} = \pm \sqrt {1 - \frac{9}{{25}}} = \pm \frac{4}{5}\)
Vì \(\frac{\pi }{2} < x < \pi \) nên \(\cos x = - \frac{4}{5} \Rightarrow \tan x = - \frac{3}{4}\)
Ta có: \(\tan \left( {x + \frac{\pi }{4}} \right) = \frac{{\tan x + \tan \frac{\pi }{4}}}{{1 - \tan x.\tan \frac{\pi }{4}}} = \frac{{ - \frac{3}{4} + 1}}{{1 + \frac{3}{4}}} = \frac{1}{7}\)
b) Ta có \(\sin \left( {a + \frac{\pi }{4}} \right).\sin \left( {a - \frac{\pi }{4}} \right) = \frac{1}{2}\left[ {\cos \frac{\pi }{2} - \cos 2a} \right] = - \frac{1}{2}\cos 2a\)
Hãy suy nghĩ và trả lời câu hỏi trước khi HOC247 cung cấp đáp án và lời giải
ATNETWORK
Mã câu hỏi: 61233
Loại bài: Bài tập
Chủ đề :
Môn học: Toán Học
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
-
Đề thi HK2 môn Toán lớp 10 Sở GD & ĐT Thái Bình năm 2018
33 câu hỏi | 90 phút Bắt đầu thi
YOMEDIA Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Cho tam thức \(f(x) = {\rm{a}}{{\rm{x}}^2} + bx + c,{\rm{(a}} \ne {\rm{0),}}\,\,\Delta {\rm{ = }}{{\rm{b}}^2} - 4ac\).
- Trong mặt phẳng Oxy, phương trình nào sau đây là phương trình đường tròn?
- Trong mặt phẳng Oxy, phương trình nào sau đây là phương trình chính tắc của một elip?
- Giá trị nào của x cho sau đây không là nghiệm của bất phương trình \(2x - 5 \le 0\)
- Cho hai điểm \(A\left( {3; - 1} \right), B\left( {0;3} \right)\).
- Trong mặt phẳng Oxy, đường tròn \(\left( C \right):{x^2} + {y^2} + 4x + 6y - 12 = 0\) có tâm là:
- Trong mặt phẳng Oxy, đường tròn đi qua ba điểm \(A(1;2), B(5;2), C(1;-3)\) có phương trình là
- Cho \(\sin \alpha .
- Rút gọn biểu thức \(A = \frac{{\sin 3x + \cos 2x - \sin x}}{{\cos x + \sin 2x - \cos 3x}}\mathop {}\limits^{} \left( {\sin 2x \ne 0;2\sin
- Mệnh đề nào sau đây đúng? \(\cos 2a = {\cos ^2}a--{\sin ^2}a.\)
- Trong mặt phẳng Oxy, đường thẳng \(d: x - 2y - 1 = 0\) song song với đường thẳng có phương trình nào sau đây?
- Đẳng thức nào sau đây là đúng
- Rút gọn biểu thức \(A = \sin \left( {\pi + x} \right) - \cos \left( {\frac{\pi }{2} + x} \right) + \cot \left( {2\pi - x} \right) +
- Cho tam giác \(\Delta ABC\), mệnh đề nào sau đây đúng?
- Tập nghiệm của bất phương trình \(\sqrt {x - 1} \le \sqrt {{x^2} - 4x + 3} \) là:
- Cho tam giác \(\Delta ABC\) \(có b = 7; c = 5, \cos A = \frac{3}{5}\). Đường cao \(h_a\) của tam giác ABC là:
- Cho \(\cos \alpha = - \frac{2}{5}\,\,\,\left( {\frac{\pi }{2} < \alpha < \pi } \right)\).
- Mệnh đề nào sau đây sai? \(\sin a\cos b = \frac{1}{2}\left[ {\sin \left( {a - b} \right) - \cos \left( {a + b} \right)} \right].\)
- Trong mặt phẳng Oxy, véctơ nào dưới đây là một véctơ pháp tuyến của đường thẳng \(d: \left\{ {\begin{array}{*{20}{c}}{x =
- Tập nghiệm của bất phương trình \(\frac{{2x - 1}}{{3x + 6}} \le 0\) là:
- Cho tam thức bậc hai \(f(x) = - 2{x^2} + 8x - 8\). Trong các mệnh đề sau, mệnh đề nào đúng?
- Trong mặt phẳng Oxy, cho biết điểm \(M(a;b){\rm{ }}\) \((a > 0)\) thuộc đường thẳng \(d: \left\{ {\begin{array}{*{20}{c}}{x
- Tập nghiệm S của bất phương trình \(\sqrt {x + 4} > 2 - x\) là:
- Cho đường thẳng d: \(2x + 3y - 4 = 0\). Véctơ nào sau đây là một véctơ pháp tuyến của đường thẳng d?
- Trong các công thức sau, công thức nào đúng
- Tìm côsin góc giữa 2 đường thẳng \({\Delta _1}:2x + y - 1 = 0\) và \({\Delta _2}:\left\{ \begin{array}{l}x = 2 + t\\y = 1 - t\end{array
- Tất cả các giá trị của tham số m để bất phương trình \(\frac{{ - {x^2} + 2x - 5}}{{{x^2} - mx + 1}} \le 0\) nghiệm đúng v
- Trong mặt phẳng Oxy, viết phương trình chính tắc của elip biết một đỉnh là A1 (–5; 0), và một tiêu điểm là F2(2; 0).
- Cho nhị thức bậc nhất \(f\left( x \right) = 23x - 20\). Khẳng định nào sau đây đúng?
- Trong mặt phẳng (Oxy), cho điểm M(2;1).Đường thẳng d đi qua M, cắt các tia Ox, Oy lần lượt tại A và B (A, B khác O) sao cho tam giác OAB có diện tích nhỏ nhất. Phương trình đường thẳng d là:
- Giải bất phương trình: \(\frac{{{x^2} - 7x + 12}}{{{x^2} - 4}} \le 0\)
- a. Cho \(\sin x = \frac{3}{5}\) với \(\frac{\pi }{2} < x < \pi \). Tính \(\tan \left( {x + \frac{\pi }{4}} \right)\)b.
- Trong mặt phẳng tọa độ Oxy, cho hình vuông ABCD; các điểm M, N, P lần lượt là trung điểm của AB, BC và CD; CM cắt DN tạ
Bộ đề thi nổi bật
UREKA AANETWORK
XEM NHANH CHƯƠNG TRÌNH LỚP 10
Toán 10
Toán 10 Kết Nối Tri Thức
Toán 10 Chân Trời Sáng Tạo
Toán 10 Cánh Diều
Giải bài tập Toán 10 Kết Nối Tri Thức
Giải bài tập Toán 10 CTST
Giải bài tập Toán 10 Cánh Diều
Trắc nghiệm Toán 10
Ngữ văn 10
Ngữ Văn 10 Kết Nối Tri Thức
Ngữ Văn 10 Chân Trời Sáng Tạo
Ngữ Văn 10 Cánh Diều
Soạn Văn 10 Kết Nối Tri Thức
Soạn Văn 10 Chân Trời Sáng tạo
Soạn Văn 10 Cánh Diều
Văn mẫu 10
Tiếng Anh 10
Giải Tiếng Anh 10 Kết Nối Tri Thức
Giải Tiếng Anh 10 CTST
Giải Tiếng Anh 10 Cánh Diều
Trắc nghiệm Tiếng Anh 10 KNTT
Trắc nghiệm Tiếng Anh 10 CTST
Trắc nghiệm Tiếng Anh 10 CD
Giải Sách bài tập Tiếng Anh 10
Vật lý 10
Vật lý 10 Kết Nối Tri Thức
Vật lý 10 Chân Trời Sáng Tạo
Vật lý 10 Cánh Diều
Giải bài tập Lý 10 Kết Nối Tri Thức
Giải bài tập Lý 10 CTST
Giải bài tập Lý 10 Cánh Diều
Trắc nghiệm Vật Lý 10
Hoá học 10
Hóa học 10 Kết Nối Tri Thức
Hóa học 10 Chân Trời Sáng Tạo
Hóa học 10 Cánh Diều
Giải bài tập Hóa 10 Kết Nối Tri Thức
Giải bài tập Hóa 10 CTST
Giải bài tập Hóa 10 Cánh Diều
Trắc nghiệm Hóa 10
Sinh học 10
Sinh học 10 Kết Nối Tri Thức
Sinh học 10 Chân Trời Sáng Tạo
Sinh học 10 Cánh Diều
Giải bài tập Sinh 10 Kết Nối Tri Thức
Giải bài tập Sinh 10 CTST
Giải bài tập Sinh 10 Cánh Diều
Trắc nghiệm Sinh học 10
Lịch sử 10
Lịch Sử 10 Kết Nối Tri Thức
Lịch Sử 10 Chân Trời Sáng Tạo
Lịch Sử 10 Cánh Diều
Giải bài tập Lịch Sử 10 KNTT
Giải bài tập Lịch Sử 10 CTST
Giải bài tập Lịch Sử 10 Cánh Diều
Trắc nghiệm Lịch sử 10
Địa lý 10
Địa Lý 10 Kết Nối Tri Thức
Địa Lý 10 Chân Trời Sáng Tạo
Địa Lý 10 Cánh Diều
Giải bài tập Địa Lý 10 KNTT
Giải bài tập Địa Lý 10 CTST
Giải bài tập Địa Lý 10 Cánh Diều
Trắc nghiệm Địa lý 10
GDKT & PL 10
GDKT & PL 10 Kết Nối Tri Thức
GDKT & PL 10 Chân Trời Sáng Tạo
GDKT & PL 10 Cánh Diều
Giải bài tập GDKT & PL 10 KNTT
Giải bài tập GDKT & PL 10 CTST
Giải bài tập GDKT & PL 10 CD
Trắc nghiệm GDKT & PL 10
Công nghệ 10
Công nghệ 10 Kết Nối Tri Thức
Công nghệ 10 Chân Trời Sáng Tạo
Công nghệ 10 Cánh Diều
Giải bài tập Công nghệ 10 KNTT
Giải bài tập Công nghệ 10 CTST
Giải bài tập Công nghệ 10 CD
Trắc nghiệm Công nghệ 10
Tin học 10
Tin học 10 Kết Nối Tri Thức
Tin học 10 Chân Trời Sáng Tạo
Tin học 10 Cánh Diều
Giải bài tập Tin học 10 KNTT
Giải bài tập Tin học 10 CTST
Giải bài tập Tin học 10 Cánh Diều
Trắc nghiệm Tin học 10
Cộng đồng
Hỏi đáp lớp 10
Tư liệu lớp 10
Xem nhiều nhất tuần
Đề thi giữa HK1 lớp 10
Đề thi giữa HK2 lớp 10
Đề thi HK1 lớp 10
Đề cương HK1 lớp 10
Đề thi HK2 lớp 10
Video bồi dưỡng HSG môn Toán
Toán 10 Kết nối tri thức Bài 1: Mệnh đề
Toán 10 Cánh Diều Bài tập cuối chương 1
Toán 10 Chân trời sáng tạo Bài 2: Tập hợp
Soạn bài Ra-ma buộc tội - Ngữ văn 10 Tập 1 Cánh Diều
Soạn bài Chữ người tử tù - Nguyễn Tuân - Ngữ văn 10 KNTT
Soạn bài Thần Trụ Trời - Ngữ văn 10 CTST
Văn mẫu về Tây Tiến
Văn mẫu về Cảm xúc mùa thu (Thu hứng)
Văn mẫu về Bình Ngô đại cáo
Văn mẫu về Chữ người tử tù
YOMEDIA YOMEDIA ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Bỏ qua Đăng nhập ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Đồng ý ATNETWORK ON
QC Bỏ qua >>
Từ khóa » Sin(x+pi/4)=1 Thuộc Pi 2pi
-
Số Nghiệm Của Phương Trình Sin(x + Pi/4) = 1 Trong đoạn (pi;2pi) - Lazi
-
69. Pt Sin ( X +π/4) =1 Có Bao Nhiêu Nghiệm Thuộc đoạn [ π - Hoc24
-
Số Nghiệm Của Phương Trình Sin(x+pi/4)=1 Thuộc đoạn Pi 2pi
-
Số Nghiệm Của Phương Trình Sin(x+pi/4)=1 Thuộc đoạn Pi 2pi - Học Tốt
-
Lượng Giác Các Ví Dụ - Mathway
-
Số Nghiệm Của Phương Trình Sin ( X + Pi 4 ) = 1 Thuộc đoạn [ Pi ;5pi
-
Số Nghiệm Của Phương Trình: Sin(x+pi/4)=1 Thuộc đoạn
-
Số Nghiệm Của Phương Trình Sin(x+ Pi/4)= 1 Với [pi;5pi]
-
Số Nghiệm Của Phương Trình Sin(x + π/4) = 1 Thuộc [0;3π] Là
-
Số Nghiệm Của Phương Trình: Sin(x+pi/4)=1 Thuộc đoạn
-
Số Nghiệm Của Phương Trình Sin(x + Pi/4) = 1 Thuộc [0;3pi] Là:
-
Số Giá Trị Nguyên Của Tham Số (m ) để Phương Trình (sin 2x + Că