A057434 - OEIS

login The OEIS is supported by the many generous donors to the OEIS Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 62nd year, we have over 390,000 sequences, and we’ve reached 12,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!) A057434 a(n) = Sum_{k=1..n} phi(k)^2. 12

%I #34 Dec 18 2019 03:22:20

%S 1,2,6,10,26,30,66,82,118,134,234,250,394,430,494,558,814,850,1174,

%T 1238,1382,1482,1966,2030,2430,2574,2898,3042,3826,3890,4790,5046,

%U 5446,5702,6278,6422,7718,8042,8618,8874,10474,10618,12382,12782

%N a(n) = Sum_{k=1..n} phi(k)^2.

%C Partial sums of A127473. - _R. J. Mathar_, Sep 29 2008

%H Ivan Neretin, <a href="/A057434/b057434.txt">Table of n, a(n) for n = 1..10000</a>

%H U. Balakrishnan & Y.-F. S. Pétermann, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa75/aa7512.pdf">The Dirichlet series of zeta(s)*zeta(s+1)^alpha*f(s+1): On an error term associated with its coefficients</a>, Acta Arith. 75 (1996), 39--69.

%F We can derive an asymptotic formula from a general formula given in the reference, namely: a(n) = C*n^3 + O(log(x)^(4/3)log(log(x))^(8/3)) where C = (1/3)/zeta(2)^2*Product_{p prime}(1+1/(p-1)/(p+1)^2) = 0.142749835225698(...). - _Benoit Cloitre_, Dec 22 2015

%F a(n) ~ c * n^3 / 3, where c = A065464 = Product_{primes p} (1 - 2/p^2 + 1/p^3) = 0.4282495056770944402187657075818235461212985133559361440319... - _Vaclav Kotesovec_, Dec 18 2019

%t FoldList[Plus, 1, EulerPhi[Range[2, 50]]^2] (* _Ivan Neretin_, May 30 2015 *)

%o (PARI) a(n) = sum(k=1, n, eulerphi(k)^2); \\ _Michel Marcus_, Dec 20 2015

%Y Cf. A000010, A002088, A061502, A072379, A074789.

%K nonn

%O 1,2

%A _N. J. A. Sloane_, Sep 08 2000

Lookup Welcome Wiki Register Music Plot 2 Demos Index WebCam Contribute Format Style Sheet Transforms Superseeker Recents The OEIS Community Maintained by The OEIS Foundation Inc. Last modified December 24 08:45 EST 2025. Contains 391488 sequences. License Agreements, Terms of Use, Privacy Policy

Từ khóa » Phi 8618