Adding, Subtracting And Finding The Least Common Multiple
Step 1 :
Equation at the end of step 1 :
(y2) y (y2) (((((x2)+4xy)-((((12•————)•x)•—)•(x3)))-(8x•————))+7xy)+(2•3y2) 4 2 (x2)Step 2 :
y2 Simplify —— x2Equation at the end of step 2 :
(y2) y y2 (((((x2)+4xy)-((((12•————)•x)•—)•(x3)))-(8x•——))+7xy)+(2•3y2) 4 2 x2Step 3 :
y Simplify — 2Equation at the end of step 3 :
(y2) y 8y2 (((((x2)+4xy)-((((12•————)•x)•—)•x3))-———)+7xy)+(2•3y2) 4 2 xStep 4 :
y2 Simplify —— 4Equation at the end of step 4 :
y2 y 8y2 (((((x2)+4xy)-((((12•——)•x)•—)•x3))-———)+7xy)+(2•3y2) 4 2 xStep 5 :
Multiplying exponential expressions :
5.1 x1 multiplied by x3 = x(1 + 3) = x4
Equation at the end of step 5 :
3x4y3 8y2 (((((x2)+4xy)-—————)-———)+7xy)+(2•3y2) 2 xStep 6 :
Rewriting the whole as an Equivalent Fraction :
6.1 Subtracting a fraction from a whole Rewrite the whole as a fraction using 2 as the denominator :
x2 + 4xy (x2 + 4xy) • 2 x2 + 4xy = ———————— = —————————————— 1 2Equivalent fraction : The fraction thus generated looks different but has the same value as the whole Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator
Step 7 :
Pulling out like terms :
7.1 Pull out like factors : x2 + 4xy = x • (x + 4y)
Adding fractions that have a common denominator :
7.2 Adding up the two equivalent fractions Add the two equivalent fractions which now have a common denominatorCombine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:
x • (x+4y) • 2 - (3x4y3) -3x4y3 + 2x2 + 8xy ———————————————————————— = —————————————————— 2 2Equation at the end of step 7 :
(-3x4y3 + 2x2 + 8xy) 8y2 ((———————————————————— - ———) + 7xy) + (2•3y2) 2 xStep 8 :
Step 9 :
Pulling out like terms :
9.1 Pull out like factors : -3x4y3 + 2x2 + 8xy = -x • (3x3y3 - 2x - 8y)
Trying to factor a multi variable polynomial :
9.2 Factoring 3x3y3 - 2x - 8y Try to factor this multi-variable trinomial using trial and errorFactorization fails
Calculating the Least Common Multiple :
9.3 Find the Least Common Multiple The left denominator is : 2 The right denominator is : x
Prime Factor | Left Denominator | Right Denominator | L.C.M = Max {Left,Right} |
---|---|---|---|
2 | 1 | 0 | 1 |
Product of all Prime Factors | 2 | 1 | 2 |
Algebraic Factor | Left Denominator | Right Denominator | L.C.M = Max {Left,Right} |
---|---|---|---|
x | 0 | 1 | 1 |
Least Common Multiple: 2x
Calculating Multipliers :
9.4 Calculate multipliers for the two fractions Denote the Least Common Multiple by L.C.M Denote the Left Multiplier by Left_M Denote the Right Multiplier by Right_M Denote the Left Deniminator by L_Deno Denote the Right Multiplier by R_Deno Left_M = L.C.M / L_Deno = x Right_M = L.C.M / R_Deno = 2
Making Equivalent Fractions :
9.5 Rewrite the two fractions into equivalent fractionsTwo fractions are called equivalent if they have the same numeric value. For example : 1/2 and 2/4 are equivalent, y/(y+1)2 and (y2+y)/(y+1)3 are equivalent as well. To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.
L. Mult. • L. Num. -x • (3x3y3-2x-8y) • x —————————————————— = —————————————————————— L.C.M 2x R. Mult. • R. Num. 8y2 • 2 —————————————————— = ——————— L.C.M 2xAdding fractions that have a common denominator :
9.6 Adding up the two equivalent fractions
-x • (3x3y3-2x-8y) • x - (8y2 • 2) -3x5y3 + 2x3 + 8x2y - 16y2 —————————————————————————————————— = —————————————————————————— 2x 2xEquation at the end of step 9 :
(-3x5y3 + 2x3 + 8x2y - 16y2) (———————————————————————————— + 7xy) + (2•3y2) 2xStep 10 :
Rewriting the whole as an Equivalent Fraction :
10.1 Adding a whole to a fraction Rewrite the whole as a fraction using 2x as the denominator :
7xy 7xy • 2x 7xy = ——— = ———————— 1 2xChecking for a perfect cube :
10.2 -3x5y3 + 2x3 + 8x2y - 16y2 is not a perfect cube
Adding fractions that have a common denominator :
10.3 Adding up the two equivalent fractions
(-3x5y3+2x3+8x2y-16y2) + 7xy • 2x -3x5y3 + 2x3 + 22x2y - 16y2 ————————————————————————————————— = ——————————————————————————— 2x 2xEquation at the end of step 10 :
(-3x5y3 + 2x3 + 22x2y - 16y2) ————————————————————————————— + (2•3y2) 2xStep 11 :
Rewriting the whole as an Equivalent Fraction :
11.1 Adding a whole to a fraction Rewrite the whole as a fraction using 2x as the denominator :
(2•3y2) (2•3y2) • 2x (2•3y2) = ——————— = ———————————— 1 2xChecking for a perfect cube :
11.2 -3x5y3 + 2x3 + 22x2y - 16y2 is not a perfect cube
Adding fractions that have a common denominator :
11.3 Adding up the two equivalent fractions
(-3x5y3+2x3+22x2y-16y2) + (2•3y2) • 2x -3x5y3 + 2x3 + 22x2y + 12xy2 - 16y2 —————————————————————————————————————— = ——————————————————————————————————— 2x 2xFinal result :
-3x5y3 + 2x3 + 22x2y + 12xy2 - 16y2 ——————————————————————————————————— 2xTừ khóa » (h) 2x^ 2 +7xy-8xy-2 8y^ 2
-
(i) 6a 2 -12ac+6ab-12bc (ii)2x 2 +7xy-8xy-28y 2
-
Factoring Multivariable Polynomials - Tiger Algebra
-
Solve -2x^2+8xy-8y^2 - Microsoft Math Solver
-
Giải (8x^2-xy+y^2)+(-x^2-7xy+6y^2) - Microsoft Math Solver
-
NCERT Solutions For Class 7 Math Chapter 7 - Algebraic Expressions
-
NCERT Solutions For Class 8 Math Chapter 14 - Factorisation
-
[PDF] SOLUTIONS Problem 1. Find The Critical Points Of The Function F(x, Y ...
-
Factoring Completely - Algebra - Socratic
-
Algebraic Expressions And Identities, NCERT Solutions