Bài 1, 2, 3 Trang 134 SGK Toán 4
Có thể bạn quan tâm
Bài 1
Video hướng dẫn giải
a) Viết tiếp vào chỗ chấm:
+) Nhận xét: \( \displaystyle{2 \over 3} \times {4 \over 5} = \;...;\) \( \displaystyle{4 \over 5} \times {2 \over 3} =\; ...\)
Vậy: \( \displaystyle{2 \over 3} \times {4 \over 5} \cdots {4 \over 5} \times {2 \over 3}.\)
Tính chất giao hoán: Khi đổi chỗ các phân số trong một tích thì tích của chúng không thay đổi.
+) Nhận xét: \( \displaystyle\left( {{1 \over 3} \times {2 \over 5}} \right) \times {3 \over 4} = \cdots \)
\( \displaystyle{1 \over 3} \times \left( {{2 \over 5} \times {3 \over 4}} \right) = \cdots \)
Vậy: \( \displaystyle\left( {{1 \over 3} \times {2 \over 5}} \right) \times {3 \over 4} \cdots {1 \over 3} \times \left( {{2 \over 5} \times {3 \over 4}} \right)\)
Tính chất kết hợp: Khi nhân một tích hai phân số với phân số thứ ba, ta có thể nhân phân số thứ nhất với tích của phân số thứ hai và phân số thứ ba.
+) Nhận xét: \( \displaystyle\left( {{1 \over 5} + {2 \over 5}} \right) \times {3 \over 4} = \cdots ;\)
\( \displaystyle{1 \over 5} \times {3 \over 4} + {2 \over 5} \times {3 \over 4} = \cdots \)
Vậy: \( \displaystyle\left( {{1 \over 5} + {2 \over 5}} \right) \times {3 \over 4} \cdots {1 \over 5} \times {3 \over 4} + {2 \over 5} \times {3 \over 4}\)
Khi nhân một tổng hai phân số với phân số thứ ba, ta có thể nhân từng phân số của tổng với phân số thứ ba rồi cộng các kết quả lại.
b) Tính bằng hai cách:
\( \displaystyle{3 \over {22}} \times {3 \over {11}} \times 22;\) \( \displaystyle\left( {{1 \over 2} + {1 \over 3}} \right) \times {2 \over 5};\)
\( \displaystyle{3 \over 5} \times {{17} \over {21}} + {{17} \over {21}} \times {2 \over 5}.\)
Phương pháp giải:
Áp dụng các tính chất giao hoán, kết hợp, nhân một tổng với một số để tính giá trị các biểu thức đã cho.
Lời giải chi tiết:
a) \(+)\) \( \displaystyle \displaystyle{2 \over 3} \times {4 \over 5} = {{2 \times 4} \over {3 \times 5}} = {8 \over {15}}\)
\( \displaystyle \displaystyle{4 \over 5} \times {2 \over 3} = {{4 \times 2} \over {5 \times 3}} = {8 \over {15}}\)
Vậy: \( \displaystyle \displaystyle{2 \over 3} \times {4 \over 5}= {4 \over 5} \times {2 \over 3}\)
\(+)\)\( \displaystyle \displaystyle\left( {{1 \over 3} \times {2 \over 5}} \right) \times {3 \over 4} = {2 \over {15}} \times {3 \over 4} = \frac{6}{{60}} = {1 \over {10}}\)
$\frac{1}{3} \times \left( {\frac{2}{5} \times \frac{3}{4}} \right) = \frac{1}{3} \times \frac{6}{{20}} = \frac{6}{{60}} = \frac{1}{{10}}$
Vậy: \( \displaystyle \displaystyle\left( {{1 \over 3} \times {2 \over 5}} \right) \times {3 \over 4} = {1 \over 3} \times \left( {{2 \over 5} \times {3 \over 4}} \right)\)
\(+)\) \( \displaystyle \displaystyle\left( {{1 \over 5} + {2 \over 5}} \right) \times {3 \over 4} = {3 \over 5} \times {3 \over 4} = {{3 \times 3} \over {5 \times 4}} \) \( \displaystyle= {9 \over {20}}\)
\( \displaystyle \displaystyle{1 \over 5} \times {3 \over 4} + {2 \over 5} \times {3 \over 4} = {{1 \times 3} \over {5 \times 4}} + {{2 \times 3} \over {5 \times 4}} \)
\( \displaystyle \displaystyle= {3 \over {20}} + {6 \over {20}} \) \( \displaystyle \displaystyle= {{3 + 6} \over {20}} = {9 \over {20}}\)
Vậy: \( \displaystyle \displaystyle\left( {{1 \over 5} + {2 \over 5}} \right) \times {3 \over 4} = {1 \over 5} \times {3 \over 4} + {2 \over 5} \times {3 \over 4}\)
b)
1) \( \displaystyle \displaystyle{3 \over {22}} \times {3 \over {11}} \times 22;\)
Cách 1:
$\frac{3}{{22}} \times \frac{3}{{11}} \times 22 = \frac{3}{{22}} \times \frac{3}{{11}} \times \frac{{22}}{1} = \frac{{3 \times 3 \times 22}}{{22 \times 11}} = \frac{9}{{11}}$
Cách 2:
$\frac{3}{{22}} \times \frac{3}{{11}} \times 22 = \left( {\frac{3}{{22}} \times 22} \right) \times \frac{3}{{11}} = 3 \times \frac{3}{{11}} = \frac{9}{{11}}$
2) \( \displaystyle \displaystyle\left( {{1 \over 2} + {1 \over 3}} \right) \times {2 \over 5};\)
Cách 1:
\( \displaystyle \displaystyle\left( {{1 \over 2} + {1 \over 3}} \right) \times {2 \over 5} \) \( \displaystyle \displaystyle= \left( {{3 \over 6} + {2 \over 6}} \right) \times {2 \over 5} = {5 \over 6} \times {2 \over 5} \) \( \displaystyle \displaystyle= {2 \over 6} = {1 \over 3}\)
Cách 2:
\( \displaystyle \displaystyle\left( {{1 \over 2} + {1 \over 3}} \right) \times {2 \over 5} = {1 \over 2} \times {2 \over 5} + {1 \over 3} \times {2 \over 5} \)\( \displaystyle = {1 \over 5} + {2 \over {15}} \) \( \displaystyle \displaystyle= {3 \over {15}} + {2 \over {15}} = {5 \over {15}} = {1 \over 3}\)
3) \( \displaystyle \displaystyle{3 \over 5} \times {{17} \over {21}} + {{17} \over {21}} \times {2 \over 5}\)
Cách 1:
\( \displaystyle \displaystyle{3 \over 5} \times {{17} \over {21}} + {{17} \over {21}} \times {2 \over 5} \) \( \displaystyle = {{51} \over {105}} + {{34} \over {105}} \)\( \displaystyle \displaystyle= {{85} \over {105}} = {{17} \over {21}}\)
Cách 2:
\( \displaystyle \displaystyle{3 \over 5} \times {{17} \over {21}} + {{17} \over {21}} \times {2 \over 5} = {{17} \over {21}} \times \left( {{3 \over 5} + {2 \over 5}} \right) \) \( \displaystyle \displaystyle= {{17} \over {21}} \times {5 \over 5} \) \( \displaystyle \displaystyle= {{17} \over {21}} \times 1 = {{17} \over {21}}\)
Từ khóa » Tính Bằng 2 Cách Lớp 4 Trang 134
-
Giải Toán Lớp 4 Trang 134 Luyện Tập, đáp Số Bài 1,2,3 SGK - Thủ Thuật
-
Luyện Tập Trang 134 Giải Bài Tập Toán Lớp 4 Trang 134
-
Toán Lớp 4 Trang 134: Luyện Tập Phép Nhân Phân Số
-
Toán Lớp 4 Trang 134 Luyện Tập
-
Sách Giải Bài Tập Toán Lớp 4 Luyện Tập Trang 134
-
Giải Bài 1 Trang 134 - SGK Toán Lớp 4 - Chữa Bài Tập
-
Giải Bài 1 Trang 134 - SGK Toán Lớp 4 - Lớp 4
-
Luyện Tập Trang 134 SGK Toán Lớp 4 - YouTube
-
Bài 1, 2, 3 Trang 134 SGK Toán 4: Viết Tiếp Vào Chỗ Chấm
-
Giải Toán Lớp 4 Trang 134: Luyện Tập - Bài 1, 2, 3
-
Giải Toán 4 Luyện Tập Trang 134 - Haylamdo
-
Giải SGK Toán 4 Trang 134 Luyện Tập (tiếp)
-
Giải Toán Lớp 4 Luyện Tập Trang 134
-
Giải Bài Luyện Tập Sgk Toán 4 Trang 134 - Tech12h