Bài 1. Hệ Tọa độ Trong Không Gian - SureTEST
Có thể bạn quan tâm
I. Tọa độ của điểm và của vectơ
1. Hệ tọa độ
Trong không gian, ba trục x’Ox, y’Oy, z’Oz vuông góc với nhau từng đôi một. Gọi $\overrightarrow {i,} \overrightarrow {j,} \overrightarrow k $ với $\overrightarrow {i}(1;0;0),$ $\overrightarrow {j}(0;1;0),$ $\overrightarrow {k}(0;0;1)$ lần lượt là các vectơ đơn vị trên các trục x’Ox, y’Oy, z’Oz. Hệ ba trục này được gọi là hệ tọa độ Oxyz.

Trong đó:
- O là gốc tọa độ.
- Các mặt phẳng (Oxy, Oyz, Ozx) đôi một vuông góc với nhau được gọi là các mặt phẳng tọa độ.
- Không gian với hệ tọa độ Oxyz được gọi là không gian Oxyz.
Vì $\overrightarrow {i,} \overrightarrow {j,} \overrightarrow k $ là ba vectơ đơn vị đôi một vuông góc với nhau nên:
$\overrightarrow {{i^2},} \overrightarrow {{j^2},} \overrightarrow {{k^2}} = 1$
Và $\overrightarrow i .\overrightarrow j = \overrightarrow j .\overrightarrow k = \overrightarrow k .\overrightarrow i = 0$.
2. Tọa độ của một điểm
$\overrightarrow {OM} = x\overrightarrow {i} + y\overrightarrow {j} + z\overrightarrow k $

Gọi bộ ba số (x ; y ; z) là tọa độ của điểm M đối với hệ tọa độ Oxyz, được viết: $M = \left( {x;y;z} \right)$ hoặc $M\left( {x;y;z} \right)$.
3. Tọa độ của vectơ
Trong hệ tọa độ Oxyz, tọa độ của điểm M chính là tọa độ của vectơ $\overrightarrow {OM} $. Ta có:
$M = \left( {x;y;z} \right) \Leftrightarrow \overrightarrow {OM} = \left( {x;y;z} \right)$
II. Biểu thức tọa độ của phép toán vectơ
Định lí
Trong không gian Oxyz, cho hai vectơ $\overrightarrow a = \left( {{a_1};{a_2};{a_3}} \right)$ và $\overrightarrow b = \left( {{b_1};{b_2};{b_3}} \right)$. Ta có:
a) $\vec a + \overrightarrow b = \left( {{a_1} + {b_1};{a_2} + {b_2};{a_3} + {b_3}} \right)$.
b) $\vec a - \overrightarrow b = \left( {{a_1} - {b_1};{a_2} - {b_2};{a_3} - {b_3}} \right)$.
c) $k\vec a = k\left( {{a_1};{a_2};{a_3}} \right) = \left( {k{a_1};k{a_2};k{a_3}} \right)$ với k là một số thực.
Hệ quả
a) Cho vectơ $\overrightarrow a = \left( {{a_1};{a_2};{a_3}} \right)$ và $\overrightarrow b = \left( {{b_1};{b_2};{b_3}} \right)$.
Ta có:
$\vec a = \overrightarrow b = \left\{ \begin{array}{l} {a_1} = {b_1}\\ {a_2} = {b_2}\\ {a_3} = {b_3} \end{array} \right.$
b) Vectơ $\overrightarrow 0 $ có tọa độ là $\left( {0;0;0} \right)$.
c) Với $\overrightarrow b \ne \overrightarrow 0 $ thì hai vectơ ${\vec a}$ và $\overrightarrow b $ cùng phương khi và chỉ khi có một số k sao cho: ${a_1} = k{b_1},{a_2} = k{b_2},{a_3} = k{b_3}$.
d) Trong không gian Oxyz, nếu cho hai điểm $A\left( {{x_A};{y_A};{z_A}} \right),B\left( {{x_B};{y_B};{z_B}} \right)$ thì:
* $\overrightarrow {AB} = \overrightarrow {OA} - \overrightarrow {OB} = \left( {{x_A} - {x_B};{y_A} - {y_B};{z_A} - {z_B}} \right)$
* Tọa độ trung điểm M của đoạn thẳng AB là:
$M\left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2};\frac{{{z_A} + {z_B}}}{2}} \right)$.
III. Tích vô hướng
1. Biểu thức tọa độ của tích vô hướng
Định lí
Trong không gian Oxyz, tích vô hướng của hai vectơ $\overrightarrow a = \left( {{a_1};{a_2};{a_3}} \right)$ và $\overrightarrow b = \left( {{b_1};{b_2};{b_3}} \right)$ được xác định bởi công thức:
$\overrightarrow a .\overrightarrow b = {a_1}.{b_1} + {a_2}.{b_2} + {a_3}.{b_3}$
2. Ứng dụng
a) Độ dài của vectơ: $\left| {\overrightarrow a } \right| = \sqrt {{a_1}^2 + {a_2}^2 + {a_3}^2} $
b) Khoảng cách giữa hai điểm: $AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {{y_B} - {y_A}} \right)}^2} + {{\left( {{z_B} - {z_A}} \right)}^2}} $
c) Góc giữa hai vectơ: $\cos \varphi = \cos \left( {\vec a,\overrightarrow b } \right) = \frac{{{a_1}{b_1} + {a_2}{b_2} + {a_3}{b_3}}}{{\sqrt {{a_1}^2 + {a_2}^2 + {a_3}^2} .\sqrt {{b_1}^2 + {b_2}^2 + {b_3}^2} }}$.
IV. Phương trình mặt cầu
Định lí
Trong không gian Oxyz, mặt cầu (S) tâm $I\left( {a;b;c} \right)$ bán kính r có phương trình là:
${\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {r^2}$
Từ khóa » Trong Không Gian Oxyz Trục Ox Có Phương Trình
-
Trong Không Gian Với Hệ Tọa độ Oxyz Trục Ox Có Phương Trình Tham ...
-
Trong Không Gian Với Hệ Tọa độ Oxyz, Trục Oy Có Phương Trình Là
-
Trong Không Gian Oxyz, Tìm Phương Trình Tham Số Trục Ox?
-
Phương Trình Trục Oy Trong Oxyz - .vn
-
Tọa độ Trong Không Gian, Trắc Nghiệm Toán Học Lớp 12 - Baitap123
-
Top 10 Phương Trình Ox Trong Mặt Phẳng Oxyz 2022
-
Trong Không Gian Oxyz , đường Thẳng Chứa ... - Trắc Nghiệm Online
-
Trong Không Gian Oxyz , đường Thẳng Chứa Trục Oy Có ... - Môn Toán
-
Trong Không Gian Oxyz, Trục Y'Oy Có Phương Trình Là
-
Phương Trình đường Thẳng Trong Không Gian Oxyz - DINHNGHIA.VN
-
Trong Không Gian Oxyz Trục Ox Song Song Với Mặt Phẳng Có Phương ...
-
Trong Không Gian Oxyz Trục Oy Có Phương Trình Là - Thả Rông
-
Trong Không Gian Với Hệ Tọa độ Oxyz, Trục Ox Có Phương Trình Tham...
-
Top 10 Trong Không Gian Oxyz, Trục Yoy Có Phương Trình Là 2022