Bài 1: Một Số Hệ Thức Về Cạnh Và đường Cao Trong Tam Giác Vuông
Có thể bạn quan tâm
Xem toàn bộ tài liệu Lớp 9: tại đây
Xem thêm các sách tham khảo liên quan:
- Sách Giáo Khoa Toán lớp 9 tập 1
- Sách Giáo Khoa Toán lớp 9 tập 2
- Giải Sách Bài Tập Toán Lớp 9
- Sách Giáo Viên Toán Lớp 9 Tập 1
- Sách Giáo Viên Toán Lớp 9 Tập 2
- Sách Bài Tập Toán Lớp 9 Tập 1
- Sách Bài Tập Toán Lớp 9 Tập 2
Sách giải toán 9 Bài 1: Một số hệ thức về cạnh và đường cao trong tam giác vuông giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 9 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:
Trả lời câu hỏi Toán 9 Tập 1 Bài 1 trang 66: Xét hình 1. Chứng minh ΔAHB ∼ ΔCHA. Từ đó suy ra hệ thức (2).
Lời giải
Xét ΔABH và ΔCAH có:
∠(AHB) = ∠(AHC) = 90o
∠(BAH) = ∠(ACH) (cùng phụ ∠(CAH))
⇒ ΔABH ∼ ΔCAH (g.g)
Trả lời câu hỏi Toán 9 Tập 1 Bài 1 trang 67: Xét hình 1. Hãy chứng minh hệ thức (3) bằng tam giác đồng dạng.
Lời giải
Xét tam giác ABC vuông tại A có
SABC = 1/2 AB.AC
Xét tam giác ABC có AH là đường cao
⇒ SABC = 1/2 AH.BC
⇒ 1/2 AB.AC = 1/2 AH.BC ⇒ AB.AC = AH.BC hay bc = ah
Bài 1 (trang 68 SGK Toán 9 Tập 1): Hãy tính x và y trong mỗi hình sau: (h.4a, b)
Hình 4
Lời giải:
– Hình a
Theo định lí Pitago ta có:
Áp dụng định lí 1 ta có:
– Hình b
Áp dụng định lí 1 ta có:
=> y = 20 – 7,2 = 12,8
Bài 2 (trang 68 SGK Toán 9 Tập 1): Hãy tính x và y trong mỗi hình sau: (h.5)
Hình 5
Lời giải:
Áp dụng định lí 1 ta có:
Bài 3 (trang 69 SGK Toán 9 Tập 1): Hãy tính x và y trong mỗi hình sau: (h.6)
Hình 6
Lời giải:
Áp dụng định lí Pitago ta có:
Áp dụng định lí 3 ta có:
Bài 4 (trang 69 SGK Toán 9 Tập 1): Hãy tính x và y trong mỗi hình sau: (h.7)
Hình 7
Lời giải:
Theo định lí 2 ta có:
22 = 1.x => x = 4
Theo định lí 1 ta có:
y2 = x(1 + x) = 4(1 + 4) = 20
=> y = √20 = 2√5
Bài 5 (trang 69 SGK Toán 9 Tập 1): Trong tam giác vuông với các cạnh góc vuông có độ dài 3 và 4, kẻ đường cao ứng với cạnh huyền. Hãy tính đường cao này và độ dài các đoạn thẳng mà nó định ra trên cạnh huyền.
Lời giải:
ΔABC vuông tại A có AB = 3, AC = 4 và đường cao AH như trên hình.
Theo định lí Pitago ta có:
Mặt khác, AB2 = BH.BC (định lí 1)
Theo định lí 3 ta có: AH.BC = AB.AC
Bài 6 (trang 69 SGK Toán 9 Tập 1): Đường cao của một tam giác vuông chia cạnh huyền thành hai đoạn thẳng có độ dài là 1 và 2. Hãy tính các cạnh góc vuông của tam giác này.
Lời giải:
ΔABC vuông tại A và đường cao AH như trên hình.
BC = BH + HC = 1 + 2 = 3
Theo định lí 1: AB2 = BH.BC = 1.3 = 3
=> AB = √3
Theo định lí 1: AC2 = HC.BC = 2.3 = 6
=> AC = √6
Vậy độ dài các cạnh góc vuông của tam giác lần lượt là √3 và √6.
Bài 7 (trang 69-70 SGK Toán 9 Tập 1): Người ta đưa ra hai cách vẽ đoạn trung bình nhân x của hai đoạn thẳng a, b (tức là x2 = ab) như trong hai hình sau:
Dựa vào các hệ thức (1) và (2), hãy chứng minh các cách vẽ trên là đúng.
Gợi ý: Nếu một tam giác có đường trung tuyến ứng với một cạnh bằng nữa cạnh đó thì tam giác ấy là tam giác vuông.
Lời giải:
– Cách 1: (h.8)
Theo cách dựng, ΔABC có đường trung tuyến AO bằng một nửa cạnh BC, do đó ΔABC vuông tại D.
Vì vậy AH2 = BH.CH hay x2 = ab
Đây chính là hệ thức (2) hay cách vẽ trên là đúng.
– Cách 2: (h.9)
Theo cách dựng, ΔDEF có đường trung tuyến DO bằng một nửa cạnh EF, do đó ΔDEF vuông tại D.
Vậy DE2 = EI.EF hay x2 = a.b
Đây chính là hệ thức (1) hay cách vẽ trên là đúng.
Bài 8 (trang 70 SGK Toán 9 Tập 1): Tìm x và y trong mỗi hình sau:
Lời giải:
a) Theo định lí 2 ta có:
x2 = 4.9 = 36 => x = 6
b) Vì đường cao chia cạnh huyền thành hai nửa bằng nhau nên nó đồng thời là đường trung tuyến. Mà trong tam giác vuông, đường tuyến bằng nửa cạnh huyền nên nên x = 2.
Theo định lí Pitago ta có:
Bài 9 (trang 70 SGK Toán 9 Tập 1): Cho hình vuông ABCD. Gọi I là một điểm nằm giữa A và B. Tia DI và tia CB cắt nhau ở K. Kẻ đường thẳng qua D, vuông góc với DI. Đường thẳng này cắt đường thẳng BC tại L. Chứng minh rằng:
a) Tam giác DIL là một tam giác cân
b) Tổng
không đổi khi I thay đổi trên cạnh AB.
Lời giải:
a) Xét hai tam giác vuông ADI và CDL có:
AD = CD (cạnh hình vuông)
Nên ΔADI = ΔCDL (cạnh góc cuông và góc nhọn)
Suy ra DI = DL hay ΔDIL cân. (đpcm)
b) Trong tam giác DKL vuông tại D với đường cao DC. Theo định lí 4, ta có:
không đổi khi I thay đổi trên cạnh AB. (đpcm)
Bài giải này có hữu ích với bạn không?
Bấm vào một ngôi sao để đánh giá!
Action: Post ID: Post Nonce: ☆ ☆ ☆ ☆ ☆ Processing your rating... Đánh giá trung bình {{avgRating}} / 5. Số lượt đánh giá: {{voteCount}} {{successMsg}} {{#errorMsg}} {{.}} {{/errorMsg}} There was an error rating this post!Đánh giá trung bình 4 / 5. Số lượt đánh giá: 1062
Chưa có ai đánh giá! Hãy là người đầu tiên đánh giá bài này.
Từ khóa » Bài Tập Tam Giác Lớp 9
-
Bài Tập Hệ Thức Về Góc Và Cạnh Trong Tam Giác Vuông Chọn Lọc, Có Lời ...
-
Cách Giải Bài Tập Hệ Thức Về Góc Và Cạnh Trong Tam Giác Vuông Cực ...
-
Chuyên đề Hệ Thức Lượng Trong Tam Giác Vuông
-
Giải Toán 9 Bài 4. Một Số Hệ Thức Về Cạnh Và Góc Trong Tam Giác Vuông
-
Chuyên đề Hệ Thức Lượng Trong Tam Giác Vuông - Toán Lớp 9
-
100 Bài Tập Một Số Hệ Thức Về Cạnh Và Góc Trong Tam Giác Vuông Có ...
-
Một Số Hệ Thức Về Cạnh Và Góc Trong Tam Giác Vuông - Toán 9
-
Bài Tập Hệ Thức Lượng Trong Tam Giác Vuông Có Lời Giải - HayHocHoi
-
Bài Tập Về Hệ Thức Giữa Cạnh Và Góc Trong Tam Giác Vuông
-
Bài 4: Một Số Hệ Thức Về Cạnh Và Góc Trong Tam Giác Vuông
-
Một Số Hệ Thức Về Cạnh Và đường Cao Trong Tam Giác Vuông - SGK ...
-
Toán 9 - Giải Tam Giác Vuông Mở Rộng
-
5.1. Một Số Hệ Thức Về Cạnh Và đường Cao Trong Tam Giác Vuông