Bài 1 Trang 121 SGK Đại Số Và Giải Tích 11

LG a

Tìm số hạng tổng quát \(u_n\) của dãy số \((u_n)\).

Phương pháp giải:

Tính \(u_1;u_2;u_3;...\), từ quy luật đó dự đoán công thức của \(u_n\) và chứng minh công thức đó bằng phương pháp quy nạp toán học.

Lời giải chi tiết:

Ta có:

+) Sau chu kì thứ nhất, lượng chất phóng xạ còn \(\dfrac{1}{2}\).

+) Sau chu kì thứ hai, lượng chất phóng xạ còn \(\dfrac{1}{4}=\dfrac{1}{2^2}\).

+) Sau chu kì thứ ba, lượng chất phóng xạ còn \(\dfrac{1}{8}=\dfrac{1}{2^3}\).

Do đó \(u_1=\dfrac{1}{2}\); \(u_2= \dfrac{1}{2^2}\); \(u_3=\dfrac{1}{2^3}\); ... .

Từ đó ta dự đoán công thức \(u_n=\dfrac{1}{2^{n}}\) \(\forall n \ge 1\).

Điều này chứng minh đơn giản bằng quy nạp.

Hiển nhiên công thức trên đúng với \(n=1\).

Giả sử công thức đúng với mọi \(k \ge 1\), tức là có \(u_k=\dfrac {1} {2^k}\), ta chứng minh công thức đó đúng với mọi \(n=k+1\), tức là cần chứng minh: \(u_{k+1}=\dfrac {1} {2^{k+1}}\).

Ta có \({u_{k + 1}} = \dfrac{{{u_k}}}{2} = \dfrac{1}{{{2^k}}}:2 = \dfrac{1}{{{2^k}}}.\dfrac{1}{2} = \dfrac{1}{{{2^{k + 1}}}}\)

Vậy \({u_n} = \dfrac{1}{{{2^n}}}\,\,\forall n \in {N^*}\).

Từ khóa » Giải Toán 11 Trang 121 Bài 1