Bài 2. Giá Trị Lượng Giác Của Một Cung - SureTEST
I. Giá trị của cung $\alpha $
1. Định nghĩa
Các giá trị sin$\alpha $, cos$\alpha $, tan$\alpha $, cot$\alpha $ được gọi là giá trị lượng giác của cung $\alpha $.
Ta cũng gọi trục tung là trục sin, còn trục hoành là trục côsin.
2. Hệ quả
Bảng xác định dấu của các giá trị lượng giác

3. Giá trị lượng giác của các cung đặc biệt

II. Ý nghĩa hình học của tan và cot
1. Ý nghĩa hình học của tan$\alpha $
tan$\alpha $ được biểu diễn bởi độ dài đại số của vectơ $\overrightarrow {AT} $ trên trục t’At.
Trục t’At được gọi là trục tan.

2. Ý nghĩa hình học của cot$\alpha $
cot$\alpha $ được biểu diễn bởi độ dài đại số của vectơ $\overrightarrow {BS} $ trên trục s’Bs. Trục s’Bs được gọi là trục cot.
III. Quan hệ giữa các giá trị lượng giác
1. Công thức lượng giác cơ bản
$\begin{gathered} {\sin ^2}\alpha + {\cos ^2}\alpha = 1 \hfill \\ 1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }},\alpha \ne \frac{\pi }{2} + k\pi ,k \in Z \hfill \\ 1 + {\cot ^2}\alpha = \frac{1}{{{{\sin }^2}\alpha }},\alpha \ne k\pi ,k \in Z \hfill \\ \tan \alpha .\cot \alpha = 1,\alpha \ne \frac{{k\pi }}{2},k \in Z \hfill \\ \end{gathered} $
2. Giá trị lượng giác của các cung có liên quan đặc biệt
a) Cung đối nhau $\alpha $ và -$\alpha $
cos(-$\alpha $) = cos$\alpha $
sin(-$\alpha $) = -sin$\alpha $
tan(-$\alpha $) = -tan$\alpha $
cot(-$\alpha $) = -cot$\alpha $

b) Cung bù nhau $\alpha $ và $\left( {\pi - \alpha } \right)$
$\begin{gathered} \sin \left( {\pi - \alpha } \right) = \sin \alpha \hfill \\ \cos \left( {\pi - \alpha } \right) = - \cos \alpha \hfill \\ \tan \left( {\pi - \alpha } \right) = - \tan \alpha \hfill \\ \cot \left( {\pi - \alpha } \right) = - \cot \alpha \hfill \\ \end{gathered} $

c) Cung hơn kém $\pi $: $\alpha $ và $\left( {\alpha + \pi } \right)$
$\begin{gathered} \sin \left( {\alpha + \pi } \right) = - \sin \alpha \hfill \\ \cos \left( {\alpha + \pi } \right) = - \cos \alpha \hfill \\ \tan \left( {\alpha + \pi } \right) = \tan \alpha \hfill \\ \cot \left( {\alpha + \pi } \right) = \cot \alpha \hfill \\ \end{gathered} $

d) Cung phụ nhau: $\alpha $ và $\left( {\frac{\pi }{2} - \alpha } \right)$
$\begin{gathered} \sin \left( {\frac{\pi }{2} - \alpha } \right) = \cos \alpha \hfill \\ \cos \left( {\frac{\pi }{2} - \alpha } \right) = \sin \alpha \hfill \\ \tan \left( {\frac{\pi }{2} - \alpha } \right) = \cot \alpha \hfill \\ \cot \left( {\frac{\pi }{2} - \alpha } \right) = \tan \alpha \hfill \\ \end{gathered} $

Từ khóa » Trục Sin Cos
-
Đường Tròn Lượng Giác - Tỷ Mỷ Làm Toán. Độc Lập Suy Nghĩ.
-
Giá Trị Lượng Giác Của Góc (cung) Lượng Giác - Baitap123
-
Vòng Tròn Lượng Giác Cơ Bản Và Hướng Dẫn Sử Dụng Chi Tiết
-
[ Đường Tròn Lượng Giác ] Những Thông Tin Và Một Số Lưu ý Khi Dùng
-
Đường Tròn Lượng Giác - Một Số Kết Quả Cần Nhớ
-
Đường Tròn Lượng Giác Lớp 11-Những Kiến Thức Cơ Bản Không Thể ...
-
Bài 1: Hàm Số Lượng Giác - Hoc24
-
Vòng Tròn Lượng Giác
-
Phương Pháp Đường Tròn Lượng Giác Vật Lý 12 - Kiến Guru
-
Tuyển Chọn Bài Tập Lượng Giác Lớp 10 Cơ Bản - Bạn Cần Biết
-
Trục Sin Cos - Đường Tròn Lượng Giác - X
-
Bảng Công Thức Lượng Giác đầy đủ, Từ Cơ Bản đến Nâng Cao - Mobitool
-
Trục Sin - Đường Tròn Lượng Giác