Bài 2: Quy Tắc Tính đạo Hàm - Hoc24
Có thể bạn quan tâm
HOC24
Lớp học Học bài Hỏi bài Giải bài tập Đề thi ĐGNL Tin tức Cuộc thi vui Khen thưởng- Tìm kiếm câu trả lời Tìm kiếm câu trả lời cho câu hỏi của bạn
Lớp học
- Lớp 12
- Lớp 11
- Lớp 10
- Lớp 9
- Lớp 8
- Lớp 7
- Lớp 6
- Lớp 5
- Lớp 4
- Lớp 3
- Lớp 2
- Lớp 1
Môn học
- Toán
- Vật lý
- Hóa học
- Sinh học
- Ngữ văn
- Tiếng anh
- Lịch sử
- Địa lý
- Tin học
- Công nghệ
- Giáo dục công dân
- Tiếng anh thí điểm
- Đạo đức
- Tự nhiên và xã hội
- Khoa học
- Lịch sử và Địa lý
- Tiếng việt
- Khoa học tự nhiên
- Hoạt động trải nghiệm
- Hoạt động trải nghiệm, hướng nghiệp
- Giáo dục kinh tế và pháp luật
Chủ đề / Chương
Bài học
HOC24
Khách vãng lai Đăng nhập Đăng ký Khám phá Hỏi đáp Đề thi Tin tức Cuộc thi vui Khen thưởng - Lớp 11
- Toán lớp 11
- Chương 5: ĐẠO HÀM
Chủ đề
- Bài 1: Định nghĩa và ý nghĩa của đạo hàm
- Bài 2: Quy tắc tính đạo hàm
- Bài 3: Đạo hàm của hàm số lượng giác
- Bài 4: Vi phân
- Bài 5: Đạo hàm cấp hai
- Bài 6: Ôn tập chương Đạo hàm
- Lý thuyết
- Trắc nghiệm
- Giải bài tập SGK
- Hỏi đáp
- Đóng góp lý thuyết
Câu hỏi
Hủy Xác nhận phù hợp
- nguyen thi be
đạo hàm các hàm số sau:
1.y=\(\dfrac{\sqrt{x+1}}{x}\)
2.\(\dfrac{x}{1-x^2}\)
3. y=\(\dfrac{1}{x-\sqrt{x+1}}\)
cho f(x)=\(x^2+\dfrac{1}{x^2}\) tìm x để y'=0
y=\(\sqrt{1+\sqrt{1+x}}\) tìm x để f(x).f'(x)=\(\dfrac{1}{2\sqrt{2}}\)
Lớp 11 Toán Bài 2: Quy tắc tính đạo hàm 1 0
Gửi Hủy
Hoàng Tử Hà 1/ \(y'=\dfrac{\left(\sqrt{x+1}\right)'x-x'\sqrt{x+1}}{x^2}=\dfrac{\dfrac{x}{2\sqrt{x+1}}-\sqrt{x+1}}{x^2}=\dfrac{-x-2}{2x^2\sqrt{x+1}}\)
2/ \(y'=\dfrac{1-x^2-\left(1-x^2\right)'x}{\left(1-x^2\right)^2}=\dfrac{1+x^2}{\left(1-x^2\right)^2}\)
3/ \(y'=\dfrac{-\left(x-\sqrt{x+1}\right)'}{\left(x-\sqrt{x+1}\right)^2}=\dfrac{-1+\dfrac{1}{2\sqrt{x+1}}}{\left(x-\sqrt{x+1}\right)^2}\)
4/ \(y'=f'\left(x\right)=2x-\dfrac{2x}{x^4}=2x-\dfrac{2}{x^3}\)
\(y'=0\Leftrightarrow\dfrac{2x^4-2}{x^3}=0\Leftrightarrow x=\pm1\)
5/ \(y'=\dfrac{\dfrac{1}{2\sqrt{1+x}}}{2\sqrt{1+\sqrt{1+x}}}\Rightarrow f\left(x\right).f'\left(x\right)=\sqrt{1+\sqrt{1+x}}.\dfrac{1}{4\sqrt{1+x}.\sqrt{1+\sqrt{1+x}}}=\dfrac{1}{4\sqrt{1+x}}=\dfrac{1}{2\sqrt{2}}\)
\(\Leftrightarrow2\sqrt{1+x}=\sqrt{2}\Leftrightarrow1+x=\dfrac{1}{2}\Leftrightarrow x=-\dfrac{1}{2}\)
Hãy nhớ câu tính đạo hàm này, bởi nó liên quan đến nguyên hàm sau này sẽ học
Đúng 1 Bình luận (1)
Gửi Hủy Các câu hỏi tương tự
- Bài 4
Tìm đạo hàm của các hàm số sau :
a) \(y=x^2-x\sqrt{x}+1\)
b) \(y=\sqrt{2-5x-x^2}\)
c) \(y=\dfrac{x^3}{\sqrt{a^2-x^2}}\) (a là hằng số)
d) \(y=\dfrac{1+x}{\sqrt{1-x}}\)
Xem chi tiết Lớp 11 Toán Bài 2: Quy tắc tính đạo hàm 1 0
- Bài 2.12
Rút gọn :
\(f\left(x\right)=\left(\dfrac{x-1}{2\left(\sqrt{x}+1\right)}+1\right)\left(\dfrac{2}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x-2}}{\sqrt{x+2}+\sqrt{x-2}}+\dfrac{x+2}{\sqrt{x^2-4}-x+2}\right)\)
và tìm \(f'\left(x\right)\)
Xem chi tiết Lớp 11 Toán Bài 2: Quy tắc tính đạo hàm 0 0
- nanako
Tính đạo hàm của hàm hợp:
a) y= \(\sqrt{\left(x^3-3x\right)^3}\)
b) y=\(\left(\sqrt{x^3+1}-x^2+2\right)^5\)
c) y= \(2.\left(x^6+2x-3\right)^7\)
d) y= \(\dfrac{1}{\sqrt{\left(x^3-1\right)^5}}\)
Xem chi tiết Lớp 11 Toán Bài 2: Quy tắc tính đạo hàm 1 0
- Quỳnh Anh
Dùng đạo hàm tìm giới hạn:
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{x+3}-3\sqrt{x+7}}{x^2-1}\)
Xem chi tiết Lớp 11 Toán Bài 2: Quy tắc tính đạo hàm 1 0
- Quỳnh Anh
Dùng đạo hàm tìm giới hạn:
\(\lim\limits_{x\rightarrow2}\dfrac{\sqrt{x^2+x+3}-x^2+1}{x^2-4}\)
Xem chi tiết Lớp 11 Toán Bài 2: Quy tắc tính đạo hàm 2 0
- Quỳnh Anh
Dùng đạo hàm tìm giới hạn:
\(\lim\limits_{x\rightarrow2}\dfrac{\sqrt{x^2+x+3}-x^2+1}{x^2-4}\)
Xem chi tiết Lớp 11 Toán Bài 2: Quy tắc tính đạo hàm 1 0
- Nguyễn Kiều Anh
1. Tính đạo hàm của các hàm số sau:
a, \(y=\dfrac{2x-1}{x-1}\)
b, \(y=\dfrac{2x+1}{1-3x}\)
c, \(y=\dfrac{x^2+2x+2}{x+1}\)
d, \(y=\dfrac{2x^2}{x^2-2x-3}\)
e, \(y=x+1-\dfrac{2}{x-1}\)
g, \(y=\dfrac{2x^2-4x+5}{2x+1}\)
2. Tính đạo hàm của các hàm số sau:
a, \(y=\left(x^2+x+1\right)^4\)
b, y= (1-2x2)5
c, \(y=\left(\dfrac{2x+1}{x-1}\right)^3\)
d, \(y=\dfrac{\left(x+1\right)^2}{\left(x-1\right)^3}\)
e, \(y=\dfrac{1}{\left(x^2-2x+5\right)^2}\)
f, \(y=\left(3-2x^2\right)^4\)
Xem chi tiết Lớp 11 Toán Bài 2: Quy tắc tính đạo hàm 2 0
- Bình Trần Thị
-
tính đạo hàm của mỗi hàm số sau :
a) y=\(\dfrac{1}{\left(x^2-x+1\right)^5}\) ; b) y=\(x^2+x\sqrt{x}+1\) ; c) y=\(\sqrt{\dfrac{x^2+1}{x}}\)
Xem chi tiết Lớp 11 Toán Bài 2: Quy tắc tính đạo hàm 1 0
- Bình Trần Thị
-
tìm đạo hàm của mỗi hàm số sau :
a) y=\(\dfrac{1+x}{\sqrt{1-x}}\) ; b)y=\(\dfrac{x}{\sqrt{a^2-x^2}}\)
Xem chi tiết Lớp 11 Toán Bài 2: Quy tắc tính đạo hàm 3 0Khoá học trên OLM (olm.vn)
- Toán lớp 11 (Kết nối tri thức với cuộc sống)
- Toán lớp 11 (Cánh Diều)
- Toán lớp 11 (Chân trời sáng tạo)
- Ngữ văn lớp 11
- Tiếng Anh lớp 11 (i-Learn Smart World)
- Tiếng Anh lớp 11 (Global Success)
- Vật lý lớp 11 (Kết nối tri thức với cuộc sống)
- Vật lý lớp 11 (Cánh diều)
- Hoá học lớp 11 (Kết nối tri thức với cuộc sống)
- Hoá học lớp 11 (Cánh diều)
- Sinh học lớp 11 (Kết nối tri thức với cuộc sống)
- Sinh học lớp 11 (Cánh diều)
- Lịch sử lớp 11 (Kết nối tri thức với cuộc sống)
- Lịch sử lớp 11 (Cánh diều)
- Địa lý lớp 11 (Kết nối tri thức với cuộc sống)
- Địa lý lớp 11 (Cánh diều)
- Giáo dục kinh tế và pháp luật lớp 11 (Kết nối tri thức với cuộc sống)
- Tin học lớp 11 (Kết nối tri thức với cuộc sống)
- Công nghệ lớp 11 (Kết nối tri thức với cuộc sống)
Khoá học trên OLM (olm.vn)
- Toán lớp 11 (Kết nối tri thức với cuộc sống)
- Toán lớp 11 (Cánh Diều)
- Toán lớp 11 (Chân trời sáng tạo)
- Ngữ văn lớp 11
- Tiếng Anh lớp 11 (i-Learn Smart World)
- Tiếng Anh lớp 11 (Global Success)
- Vật lý lớp 11 (Kết nối tri thức với cuộc sống)
- Vật lý lớp 11 (Cánh diều)
- Hoá học lớp 11 (Kết nối tri thức với cuộc sống)
- Hoá học lớp 11 (Cánh diều)
- Sinh học lớp 11 (Kết nối tri thức với cuộc sống)
- Sinh học lớp 11 (Cánh diều)
- Lịch sử lớp 11 (Kết nối tri thức với cuộc sống)
- Lịch sử lớp 11 (Cánh diều)
- Địa lý lớp 11 (Kết nối tri thức với cuộc sống)
- Địa lý lớp 11 (Cánh diều)
- Giáo dục kinh tế và pháp luật lớp 11 (Kết nối tri thức với cuộc sống)
- Tin học lớp 11 (Kết nối tri thức với cuộc sống)
- Công nghệ lớp 11 (Kết nối tri thức với cuộc sống)
Từ khóa » Tính đạo Hàm Y=1-x/2^x
-
Tính đạo Hàm Của Hàm Số Y= 1-x / 2^x ? Y ' = 2-x/2^x
-
[LỜI GIẢI] Tính đạo Hàm Của Hàm Số Y = 1 - X2^x - Tự Học 365
-
Tìm Đạo Hàm - D/dx Y=1/(1-x^2) | Mathway
-
Tính đạo Hàm Của Hàm Số Y=1/(x^2-x+1)^5... - Vietjack.online
-
Tính đạo Hàm Của Y=1/(x^2-x+1)^5 - Lan Anh - HOC247
-
Đạo Hàm Của Hàm Số (y = (1)(((x^2))) ) Là
-
Tính đạo Hàm Của Hàm Số Y=x^2-x+1/x-1 Ta được:...
-
Tính đạo Hàm Của Hàm Số Y=1/(x^2-x+1)^5
-
Tính đạo Hàm Của Hàm Số Y=1/(x^2-x+1)^5...
-
Giải Toán 11 Bài 2. Quy Tắc Tính đạo Hàm
-
Công Thức Tính đạo Hàm 1/x Và Hướng Dẫn Cách Giải Bài ... - Monkey
-
Y = ( 1 ) / ( 2 ) X2 +x+1 | Xem Lời Giải Tại QANDA