Bài 2 Trang 49 SGK Đại Số 10 - Môn Toán - Tìm đáp án, Giải Bài Tập, để

Lập bảng biến thiên và vẽ đồ thị của các hàm số.

LG a

\(y = 3x^2- 4x + 1\);

Phương pháp giải:

Dựa vào đồ thị của hàm số \(y= a x^2 + bx + c\) ( a khác 0), ta có bảng biến thiên của nó trong hai trường hợp a > 0 và a < 0 như sau:

Cách vẽ:

Bước 1: Xác định tọa độ của đỉnh \(I\left( { - \frac{b}{{2a}}; - \frac{\Delta }{{4a}}} \right)\)

Bước 2: Vẽ trục đối xứng \(x =  - \frac{b}{{2a}}\)

Bước 3: Xác định tọa độ các giao điểm của parabol với trục tung, trục hoành ( nếu có)

Xác định thêm một số điểm thuộc đồ thị để vẽ đồ thị chính xác hơn.

4) Vẽ parabol

Khi vẽ parabol cần lưu ý đến dấu của hệ số a (a > 0 thì bề lõm quay lên trên); (a > 0 thì bề lõm quay xuống dưới).

Lời giải chi tiết:

\(y = 3x^2- 4x + 1\)

Bảng biến thiên:

Đồ thị:

- Đỉnh: \(I\left( {{2 \over 3}; - {1 \over 3}} \right)\)

- Trục đối xứng: \(x = {2 \over 3}\)

- Giao điểm với trục tung \(A(0; 1)\)

- Giao điểm với trục hoành \(B\left( {{1 \over 3};0} \right)\), \(C(1; 0)\).

LG b

\(y = - 3x^2+ 2x – 1\);

Phương pháp giải:

Dựa vào đồ thị của hàm số \(y= a x^2 + bx + c\) ( a khác 0), ta có bảng biến thiên của nó trong hai trường hợp a > 0 và a < 0 như sau:

Cách vẽ:

Bước 1: Xác định tọa độ của đỉnh \(I\left( { - \frac{b}{{2a}}; - \frac{\Delta }{{4a}}} \right)\)

Bước 2: Vẽ trục đối xứng \(x =  - \frac{b}{{2a}}\)

Bước 3: Xác định tọa độ các giao điểm của parabol với trục tung, trục hoành ( nếu có)

Xác định thêm một số điểm thuộc đồ thị để vẽ đồ thị chính xác hơn.

4) Vẽ parabol

Khi vẽ parabol cần lưu ý đến dấu của hệ số a (a > 0 thì bề lõm quay lên trên); (a > 0 thì bề lõm quay xuống dưới).

Lời giải chi tiết:

\(y = - 3x^2+ 2x – 1\)

Bảng biến thiên:

Vẽ đồ thị:

- Đỉnh \(I\left( {{1 \over 3}; - {2 \over 3}} \right)\), trục đối xứng: \(x = {1 \over 3}\)

- Giao điểm với trục tung \(A(0;- 1)\).

- Giao điểm với trục hoành: không có.

Ta xác định thêm điểm phụ: \(B(1;- 2)\), \(C(1;- 6)\).

LG c

\(y = 4x^2- 4x + 1\);

Phương pháp giải:

Dựa vào đồ thị của hàm số \(y= a x^2 + bx + c\) ( a khác 0), ta có bảng biến thiên của nó trong hai trường hợp a > 0 và a < 0 như sau:

Cách vẽ:

Bước 1: Xác định tọa độ của đỉnh \(I\left( { - \frac{b}{{2a}}; - \frac{\Delta }{{4a}}} \right)\)

Bước 2: Vẽ trục đối xứng \(x =  - \frac{b}{{2a}}\)

Bước 3: Xác định tọa độ các giao điểm của parabol với trục tung, trục hoành ( nếu có)

Xác định thêm một số điểm thuộc đồ thị để vẽ đồ thị chính xác hơn.

4) Vẽ parabol

Khi vẽ parabol cần lưu ý đến dấu của hệ số a (a > 0 thì bề lõm quay lên trên); (a > 0 thì bề lõm quay xuống dưới).

Lời giải chi tiết:

\(y = 4x^2- 4x + 1\).

Lập bảng biến thiên:

Đồ thị:

+ Đỉnh \(I\left( {\dfrac{1}{2};0} \right)\), trục đối xứng \(x=\dfrac{1}{2}\)

+ Tiếp xúc với trục Ox tại I.

+ Cắt trục Oy tại \(A(0;1)\).

LG d

\(y = - x^2+ 4x – 4\);

Phương pháp giải:

Dựa vào đồ thị của hàm số \(y= a x^2 + bx + c\) ( a khác 0), ta có bảng biến thiên của nó trong hai trường hợp a > 0 và a < 0 như sau:

Cách vẽ:

Bước 1: Xác định tọa độ của đỉnh \(I\left( { - \frac{b}{{2a}}; - \frac{\Delta }{{4a}}} \right)\)

Bước 2: Vẽ trục đối xứng \(x =  - \frac{b}{{2a}}\)

Bước 3: Xác định tọa độ các giao điểm của parabol với trục tung, trục hoành ( nếu có)

Xác định thêm một số điểm thuộc đồ thị để vẽ đồ thị chính xác hơn.

4) Vẽ parabol

Khi vẽ parabol cần lưu ý đến dấu của hệ số a (a > 0 thì bề lõm quay lên trên); (a > 0 thì bề lõm quay xuống dưới).

Lời giải chi tiết:

\(y = - x^2+ 4x – 4\)

Bảng biến thiên:

Đồ thị:

+ Đỉnh \(I(2;0)\), trục đối xứng \(x=2\).

+ Tiếp xúc với trục Ox tại \(I\).

+ Cắt Oy tại \(A(0;-4)\).

+ Lấy thêm hai điểm phụ \((1;-1)\) và \((3;-1)\).

LG e

\(y = 2x^2+ x + 1\);  

Phương pháp giải:

Dựa vào đồ thị của hàm số \(y= a x^2 + bx + c\) ( a khác 0), ta có bảng biến thiên của nó trong hai trường hợp a > 0 và a < 0 như sau:

Cách vẽ:

Bước 1: Xác định tọa độ của đỉnh \(I\left( { - \frac{b}{{2a}}; - \frac{\Delta }{{4a}}} \right)\)

Bước 2: Vẽ trục đối xứng \(x =  - \frac{b}{{2a}}\)

Bước 3: Xác định tọa độ các giao điểm của parabol với trục tung, trục hoành ( nếu có)

Xác định thêm một số điểm thuộc đồ thị để vẽ đồ thị chính xác hơn.

4) Vẽ parabol

Khi vẽ parabol cần lưu ý đến dấu của hệ số a (a > 0 thì bề lõm quay lên trên); (a > 0 thì bề lõm quay xuống dưới).

Lời giải chi tiết:

\(y = 2x^2+ x + 1\);   

- Đỉnh \(I\left( {{{ - 1} \over 4};{{ 7} \over 8}} \right)\)

- Trục đối xứng: \(x = {{ - 1} \over 4}\)

- Giao \(Ox\): Đồ thị không giao với trục hoành

- Giao \(Oy\): Giao với trục tung tại điểm \((0;1)\)

Bảng biến thiên:

Vẽ đồ thị theo bảng sau:

x

-2

-1

0

1

2

y

7

2

1

4

11

LG f

\(y = - x^2+ x - 1\).

Phương pháp giải:

Dựa vào đồ thị của hàm số \(y= a x^2 + bx + c\) ( a khác 0), ta có bảng biến thiên của nó trong hai trường hợp a > 0 và a < 0 như sau:

Cách vẽ:

Bước 1: Xác định tọa độ của đỉnh \(I\left( { - \frac{b}{{2a}}; - \frac{\Delta }{{4a}}} \right)\)

Bước 2: Vẽ trục đối xứng \(x =  - \frac{b}{{2a}}\)

Bước 3: Xác định tọa độ các giao điểm của parabol với trục tung, trục hoành ( nếu có)

Xác định thêm một số điểm thuộc đồ thị để vẽ đồ thị chính xác hơn.

4) Vẽ parabol

Khi vẽ parabol cần lưu ý đến dấu của hệ số a (a > 0 thì bề lõm quay lên trên); (a > 0 thì bề lõm quay xuống dưới).

Lời giải chi tiết:

\(y = - x^2+ x - 1\).

- Đỉnh  \(I\left( {{1 \over 2};{{ - 3} \over 4}} \right)\)

- Trục đối xứng: \(x = {1 \over 2}\)

- Giao Ox: Đồ thị không giao với trục hoành

- Giao Oy: Giao với trục tung tại điểm \((0;-1)\)

Bảng biến thiên:

Vẽ đồ thị theo bảng sau:

x

-2

-1

0

1

2

y

-7

-3

-1

-1

-3

Từ khóa » đại 10 Bài 2 Trang 49