Bài 26 Trang 14 SGK Toán 8 Tập 1

LG a.

\({(2{x^2} + 3y)^3}\);

Phương pháp giải:

Áp dụng:

\({\left( {A + B} \right)^3} = {A^3} + 3{A^2}B + 3A{B^2} + {B^3}\)

\({\left( {A.B} \right)^n} = {A^n}.{B^n}\)

Lời giải chi tiết:

\(\eqalign{& {(2{x^2} + {\rm{ }}3y)^3} = {(2{x^2})^3} + 3.{(2{x^2})^2}.3y + 3.{\rm{ }}2{x^2}.{\left( {3y} \right)^2} + {\left( {3y} \right)^3} \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 8{x^6} + 3.4{x^4}.3y + 3.2{x^2}.9{y^2} + 27{y^3} \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,= 8{x^6} + 36{x^4}y + 54{x^2}{y^2} + 27{y^3} \cr} \)

Từ khóa » Những Hằng đẳng Thức đáng Nhớ Bài Tập 26